Cargando…

Inhibition of a sulfate reducing bacterium, Desulfovibrio marinisediminis GSR3, by biosynthesized copper oxide nanoparticles

To control the severe problem of microbiologically influenced corrosion, industries require highly potent antibacterial agent which can inhibit the growth of bacteria on man-made surfaces. This need drove the research towards the synthesis of nanoscale antimicrobial compounds. We, therefore, screene...

Descripción completa

Detalles Bibliográficos
Autores principales: Alasvand Zarasvand, Kiana, Rai, V. Ravishankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773376/
https://www.ncbi.nlm.nih.gov/pubmed/28330154
http://dx.doi.org/10.1007/s13205-016-0403-0
Descripción
Sumario:To control the severe problem of microbiologically influenced corrosion, industries require highly potent antibacterial agent which can inhibit the growth of bacteria on man-made surfaces. This need drove the research towards the synthesis of nanoscale antimicrobial compounds. We, therefore, screened several bacteria for the biosynthesis of copper/copper compound nanoparticles which could inhibit the growth of Desulfovibrio marinisediminis, a sulfate reducing bacterium. Supernatant of thirty bacteria isolated from the biofilm formed on ship hull was mixed with 1 mM CuCl(2) solution at room temperature. Eight bacterial strains, whose mixtures exhibited colour change, were selected for antimicrobial test. One nanoparticle which has been biosynthesized by Shewanella indica inhibited the growth of D. marinisediminis. Characterization of this particle by UV–visible spectrophotometer, XRD, TEM, DLS and FTIR showed that the particle is polydisperse CuO nanoparticle with average size of 400 nm.