Cargando…
Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model
Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting...
Autores principales: | Luque, Niceto R., Garrido, Jesús A., Naveros, Francisco, Carrillo, Richard R., D'Angelo, Egidio, Ros, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773604/ https://www.ncbi.nlm.nih.gov/pubmed/26973504 http://dx.doi.org/10.3389/fncom.2016.00017 |
Ejemplares similares
-
Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation
por: Garrido, Jesús A., et al.
Publicado: (2013) -
Connection control implications in a distributed plasticity cerebellar model
por: Luque, Niceto R, et al.
Publicado: (2013) -
Adaptive Robotic Control Driven by a Versatile Spiking Cerebellar Network
por: Casellato, Claudia, et al.
Publicado: (2014) -
Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation
por: Luque, Niceto R., et al.
Publicado: (2014) -
CPU-GPU hybrid platform for efficient spiking neural-network simulation
por: Naveros, Francisco, et al.
Publicado: (2013)