Cargando…
Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway
AIMS/INTRODUCTION: Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and li...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773664/ https://www.ncbi.nlm.nih.gov/pubmed/27042269 http://dx.doi.org/10.1111/jdi.12402 |
_version_ | 1782418782511169536 |
---|---|
author | Zhou, Mei‐Cen Yu, Ping Sun, Qi Li, Yu‐Xiu |
author_facet | Zhou, Mei‐Cen Yu, Ping Sun, Qi Li, Yu‐Xiu |
author_sort | Zhou, Mei‐Cen |
collection | PubMed |
description | AIMS/INTRODUCTION: Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver‐associated signaling pathway by expression profiling analysis. MATERIALS AND METHODS: Four‐week‐old male UCP2−/− mice and UCP2+/+ mice were randomly assigned to four groups: UCP2−/− on a high‐fat diet, UCP2−/− on a normal chow diet, UCP2+/+ on a high‐fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. RESULTS: The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β‐cell function were improved in the UCP2−/− group on high‐fat diet. Enhanced insulin sensitivity was observed in the UCP2−/− group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the ‘peroxisome proliferator‐activated receptor (PPAR) signaling pathway’ (P = 3.19 × 10(−11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2−/− mice were significantly upregulated. CONCLUSIONS: The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2‐deficient mice on a long‐term high‐fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes. |
format | Online Article Text |
id | pubmed-4773664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-47736642016-04-01 Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway Zhou, Mei‐Cen Yu, Ping Sun, Qi Li, Yu‐Xiu J Diabetes Investig Articles AIMS/INTRODUCTION: Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver‐associated signaling pathway by expression profiling analysis. MATERIALS AND METHODS: Four‐week‐old male UCP2−/− mice and UCP2+/+ mice were randomly assigned to four groups: UCP2−/− on a high‐fat diet, UCP2−/− on a normal chow diet, UCP2+/+ on a high‐fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. RESULTS: The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β‐cell function were improved in the UCP2−/− group on high‐fat diet. Enhanced insulin sensitivity was observed in the UCP2−/− group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the ‘peroxisome proliferator‐activated receptor (PPAR) signaling pathway’ (P = 3.19 × 10(−11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2−/− mice were significantly upregulated. CONCLUSIONS: The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2‐deficient mice on a long‐term high‐fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes. John Wiley and Sons Inc. 2015-09-02 2016-03 /pmc/articles/PMC4773664/ /pubmed/27042269 http://dx.doi.org/10.1111/jdi.12402 Text en © 2015 The Authors. Journal of Diabetes Investigation published by Asian Association of the Study of Diabetes (AASD) and Wiley Publishing Asia Pty Ltd This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhou, Mei‐Cen Yu, Ping Sun, Qi Li, Yu‐Xiu Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway |
title | Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway |
title_full | Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway |
title_fullStr | Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway |
title_full_unstemmed | Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway |
title_short | Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway |
title_sort | expression profiling analysis: uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high‐fat diet‐fed mice by modulating expression of genes in peroxisome proliferator‐activated receptor signaling pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773664/ https://www.ncbi.nlm.nih.gov/pubmed/27042269 http://dx.doi.org/10.1111/jdi.12402 |
work_keys_str_mv | AT zhoumeicen expressionprofilinganalysisuncouplingprotein2deficiencyimproveshepaticglucoselipidprofilesandinsulinsensitivityinhighfatdietfedmicebymodulatingexpressionofgenesinperoxisomeproliferatoractivatedreceptorsignalingpathway AT yuping expressionprofilinganalysisuncouplingprotein2deficiencyimproveshepaticglucoselipidprofilesandinsulinsensitivityinhighfatdietfedmicebymodulatingexpressionofgenesinperoxisomeproliferatoractivatedreceptorsignalingpathway AT sunqi expressionprofilinganalysisuncouplingprotein2deficiencyimproveshepaticglucoselipidprofilesandinsulinsensitivityinhighfatdietfedmicebymodulatingexpressionofgenesinperoxisomeproliferatoractivatedreceptorsignalingpathway AT liyuxiu expressionprofilinganalysisuncouplingprotein2deficiencyimproveshepaticglucoselipidprofilesandinsulinsensitivityinhighfatdietfedmicebymodulatingexpressionofgenesinperoxisomeproliferatoractivatedreceptorsignalingpathway |