Cargando…

Genetic association analyses highlight biological pathways underlying mitral valve prolapse

Non-syndromic mitral valve prolapse (MVP) is a common degenerative cardiac valvulopathy of unknown aetiology that predisposes to mitral regurgitation, heart failure and sudden death(1). Previous family and pathophysiological studies suggest a complex pattern of inheritance(2–5). We performed a meta-...

Descripción completa

Detalles Bibliográficos
Autores principales: Dina, Christian, Bouatia-Naji, Nabila, Tucker, Nathan, Delling, Francesca N., Toomer, Katelynn, Durst, Ronen, Perrocheau, Maelle, Fernandez-Friera, Leticia, Solis, Jorge, Le Tourneau, Thierry, Chen, Ming-Huei, Probst, Vincent, Bosse, Yohan, Pibarot, Philippe, Zelenika, Diana, Lathrop, Mark, Hercberg, Serge, Roussel, Ronan, Benjamin, Emelia J., Bonnet, Fabrice, Su Hao, LO, Dolmatova, Elena, Simonet, Floriane, Lecointe, Simon, Kyndt, Florence, Redon, Richard, Le Marec, Hervé, Froguel, Philippe, Ellinor, Patrick T., Vasan, Ramachandran S., Bruneval, Patrick, Norris, Russell A., Milan, David J., Slaugenhaupt, Susan A., Levine, Robert A., Schott, Jean-Jacques, Hagege, Albert A., Jeunemaitre, Xavier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773907/
https://www.ncbi.nlm.nih.gov/pubmed/26301497
http://dx.doi.org/10.1038/ng.3383
_version_ 1782418828442992640
author Dina, Christian
Bouatia-Naji, Nabila
Tucker, Nathan
Delling, Francesca N.
Toomer, Katelynn
Durst, Ronen
Perrocheau, Maelle
Fernandez-Friera, Leticia
Solis, Jorge
Le Tourneau, Thierry
Chen, Ming-Huei
Probst, Vincent
Bosse, Yohan
Pibarot, Philippe
Zelenika, Diana
Lathrop, Mark
Hercberg, Serge
Roussel, Ronan
Benjamin, Emelia J.
Bonnet, Fabrice
Su Hao, LO
Dolmatova, Elena
Simonet, Floriane
Lecointe, Simon
Kyndt, Florence
Redon, Richard
Le Marec, Hervé
Froguel, Philippe
Ellinor, Patrick T.
Vasan, Ramachandran S.
Bruneval, Patrick
Norris, Russell A.
Milan, David J.
Slaugenhaupt, Susan A.
Levine, Robert A.
Schott, Jean-Jacques
Hagege, Albert A.
Jeunemaitre, Xavier
author_facet Dina, Christian
Bouatia-Naji, Nabila
Tucker, Nathan
Delling, Francesca N.
Toomer, Katelynn
Durst, Ronen
Perrocheau, Maelle
Fernandez-Friera, Leticia
Solis, Jorge
Le Tourneau, Thierry
Chen, Ming-Huei
Probst, Vincent
Bosse, Yohan
Pibarot, Philippe
Zelenika, Diana
Lathrop, Mark
Hercberg, Serge
Roussel, Ronan
Benjamin, Emelia J.
Bonnet, Fabrice
Su Hao, LO
Dolmatova, Elena
Simonet, Floriane
Lecointe, Simon
Kyndt, Florence
Redon, Richard
Le Marec, Hervé
Froguel, Philippe
Ellinor, Patrick T.
Vasan, Ramachandran S.
Bruneval, Patrick
Norris, Russell A.
Milan, David J.
Slaugenhaupt, Susan A.
Levine, Robert A.
Schott, Jean-Jacques
Hagege, Albert A.
Jeunemaitre, Xavier
author_sort Dina, Christian
collection PubMed
description Non-syndromic mitral valve prolapse (MVP) is a common degenerative cardiac valvulopathy of unknown aetiology that predisposes to mitral regurgitation, heart failure and sudden death(1). Previous family and pathophysiological studies suggest a complex pattern of inheritance(2–5). We performed a meta-analysis of two genome-wide association studies in 1,442 cases and 2,439 controls. We identified and replicated in 1,422 cases and 6,779 controls six loci and provide functional evidence for candidate genes. We highlight LMCD1 encoding a transcription factor(6), for which morpholino knockdown in zebrafish results in atrioventricular (AV) valve regurgitation. A similar zebrafish phenotype was obtained for tensin1 (TNS1), a focal adhesion protein involved in cytoskeleton organization. We also show the expression of tensin1 during valve morphogenesis and describe enlarged posterior mitral leaflets in Tns1(−/−) mice. This study identifies the first risk loci for MVP and suggests new mechanisms involved in mitral valve regurgitation, the most common indication for mitral valve repair(7).
format Online
Article
Text
id pubmed-4773907
institution National Center for Biotechnology Information
language English
publishDate 2015
record_format MEDLINE/PubMed
spelling pubmed-47739072016-04-01 Genetic association analyses highlight biological pathways underlying mitral valve prolapse Dina, Christian Bouatia-Naji, Nabila Tucker, Nathan Delling, Francesca N. Toomer, Katelynn Durst, Ronen Perrocheau, Maelle Fernandez-Friera, Leticia Solis, Jorge Le Tourneau, Thierry Chen, Ming-Huei Probst, Vincent Bosse, Yohan Pibarot, Philippe Zelenika, Diana Lathrop, Mark Hercberg, Serge Roussel, Ronan Benjamin, Emelia J. Bonnet, Fabrice Su Hao, LO Dolmatova, Elena Simonet, Floriane Lecointe, Simon Kyndt, Florence Redon, Richard Le Marec, Hervé Froguel, Philippe Ellinor, Patrick T. Vasan, Ramachandran S. Bruneval, Patrick Norris, Russell A. Milan, David J. Slaugenhaupt, Susan A. Levine, Robert A. Schott, Jean-Jacques Hagege, Albert A. Jeunemaitre, Xavier Nat Genet Article Non-syndromic mitral valve prolapse (MVP) is a common degenerative cardiac valvulopathy of unknown aetiology that predisposes to mitral regurgitation, heart failure and sudden death(1). Previous family and pathophysiological studies suggest a complex pattern of inheritance(2–5). We performed a meta-analysis of two genome-wide association studies in 1,442 cases and 2,439 controls. We identified and replicated in 1,422 cases and 6,779 controls six loci and provide functional evidence for candidate genes. We highlight LMCD1 encoding a transcription factor(6), for which morpholino knockdown in zebrafish results in atrioventricular (AV) valve regurgitation. A similar zebrafish phenotype was obtained for tensin1 (TNS1), a focal adhesion protein involved in cytoskeleton organization. We also show the expression of tensin1 during valve morphogenesis and describe enlarged posterior mitral leaflets in Tns1(−/−) mice. This study identifies the first risk loci for MVP and suggests new mechanisms involved in mitral valve regurgitation, the most common indication for mitral valve repair(7). 2015-08-24 2015-10 /pmc/articles/PMC4773907/ /pubmed/26301497 http://dx.doi.org/10.1038/ng.3383 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Dina, Christian
Bouatia-Naji, Nabila
Tucker, Nathan
Delling, Francesca N.
Toomer, Katelynn
Durst, Ronen
Perrocheau, Maelle
Fernandez-Friera, Leticia
Solis, Jorge
Le Tourneau, Thierry
Chen, Ming-Huei
Probst, Vincent
Bosse, Yohan
Pibarot, Philippe
Zelenika, Diana
Lathrop, Mark
Hercberg, Serge
Roussel, Ronan
Benjamin, Emelia J.
Bonnet, Fabrice
Su Hao, LO
Dolmatova, Elena
Simonet, Floriane
Lecointe, Simon
Kyndt, Florence
Redon, Richard
Le Marec, Hervé
Froguel, Philippe
Ellinor, Patrick T.
Vasan, Ramachandran S.
Bruneval, Patrick
Norris, Russell A.
Milan, David J.
Slaugenhaupt, Susan A.
Levine, Robert A.
Schott, Jean-Jacques
Hagege, Albert A.
Jeunemaitre, Xavier
Genetic association analyses highlight biological pathways underlying mitral valve prolapse
title Genetic association analyses highlight biological pathways underlying mitral valve prolapse
title_full Genetic association analyses highlight biological pathways underlying mitral valve prolapse
title_fullStr Genetic association analyses highlight biological pathways underlying mitral valve prolapse
title_full_unstemmed Genetic association analyses highlight biological pathways underlying mitral valve prolapse
title_short Genetic association analyses highlight biological pathways underlying mitral valve prolapse
title_sort genetic association analyses highlight biological pathways underlying mitral valve prolapse
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773907/
https://www.ncbi.nlm.nih.gov/pubmed/26301497
http://dx.doi.org/10.1038/ng.3383
work_keys_str_mv AT dinachristian geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT bouatianajinabila geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT tuckernathan geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT dellingfrancescan geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT toomerkatelynn geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT durstronen geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT perrocheaumaelle geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT fernandezfrieraleticia geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT solisjorge geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT letourneauthierry geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT chenminghuei geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT probstvincent geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT bosseyohan geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT pibarotphilippe geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT zelenikadiana geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT lathropmark geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT hercbergserge geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT rousselronan geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT benjaminemeliaj geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT bonnetfabrice geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT suhaolo geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT dolmatovaelena geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT simonetfloriane geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT lecointesimon geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT kyndtflorence geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT redonrichard geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT lemarecherve geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT froguelphilippe geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT ellinorpatrickt geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT vasanramachandrans geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT brunevalpatrick geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT norrisrussella geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT milandavidj geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT slaugenhauptsusana geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT levineroberta geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT schottjeanjacques geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT hagegealberta geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT jeunemaitrexavier geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse
AT geneticassociationanalyseshighlightbiologicalpathwaysunderlyingmitralvalveprolapse