Cargando…

Genetic and pharmacological inhibition of vanin-1 activity in animal models of type 2 diabetes

Vanins are enzymes that convert pantetheine to pantothenic acid (vitamin B5). Insights into the function of vanins have evolved lately, indicating vanin-1 to play a role in inflammation, oxidative stress and cell migration. Moreover, vanin-1 has recently gained attention as a novel modulator of hepa...

Descripción completa

Detalles Bibliográficos
Autores principales: van Diepen, Janna A., Jansen, Patrick A., Ballak, Dov B., Hijmans, Anneke, Rutjes, Floris P.J.T., Tack, Cees J., Netea, Mihai G., Schalkwijk, Joost, Stienstra, Rinke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773925/
https://www.ncbi.nlm.nih.gov/pubmed/26932716
http://dx.doi.org/10.1038/srep21906
Descripción
Sumario:Vanins are enzymes that convert pantetheine to pantothenic acid (vitamin B5). Insights into the function of vanins have evolved lately, indicating vanin-1 to play a role in inflammation, oxidative stress and cell migration. Moreover, vanin-1 has recently gained attention as a novel modulator of hepatic glucose and lipid metabolism. In the present study, we investigated the role of vanin-1 in the development of hepatic steatosis and insulin resistance in animal models of obesity and diabetes. In addition, we evaluated the potency of RR6, a novel pharmacological vanin-1 inhibitor, as an anti-diabetic drug. Increased vanin activity was observed in plasma and liver of high fat diet (HFD)-induced obese mice, as well as ZDF-diabetic rats. Ablation of vanin-1 (Vnn1(−/−) mice) mildly improved glucose tolerance and insulin sensitivity in HFD-fed mice, but had no effects on body weight, hepatic steatosis or circulating lipid levels. Oral administration of RR6 for 8 days completely inhibited plasma vanin activity, but did not affect hepatic glucose production, insulin sensitivity or hepatic steatosis in ZDF-diabetes rats. In conclusion, absence of vanin-1 activity improves insulin sensitivity in HFD-fed animals, yet short-term inhibition of vanin activity may have limited value as an anti-diabetic strategy.