Cargando…
Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L(1/2) regularization
BACKGROUND: One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients’ gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low...
Autores principales: | Liang, Yong, Chai, Hua, Liu, Xiao-Ying, Xu, Zong-Ben, Zhang, Hai, Leung, Kwong-Sak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774162/ https://www.ncbi.nlm.nih.gov/pubmed/26932592 http://dx.doi.org/10.1186/s12920-016-0169-6 |
Ejemplares similares
-
A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis
por: Chai, Hua, et al.
Publicado: (2017) -
Adaptive L(1/2) Shooting Regularization Method for Survival Analysis Using Gene Expression Data
por: Liu, Xiao-Ying, et al.
Publicado: (2013) -
A rotation based regularization method for semi-supervised learning
por: Shukla, Prashant, et al.
Publicado: (2021) -
Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine
por: Muhammad Zaly Shah, Muhammad Zafran, et al.
Publicado: (2022) -
Controls and the AFT Tool
por: Roderick, C, et al.
Publicado: (2019)