Cargando…
The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes
BACKGROUND: The Major Histocompatibility Complex (MHC) is a genomic region containing genes with crucial roles in immune responses. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. To counteract the high variability of pathogens, the MHC evolved into...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774177/ https://www.ncbi.nlm.nih.gov/pubmed/26931144 http://dx.doi.org/10.1186/s12864-016-2500-1 |
_version_ | 1782418873425854464 |
---|---|
author | Plasil, Martin Mohandesan, Elmira Fitak, Robert R. Musilova, Petra Kubickova, Svatava Burger, Pamela A. Horin, Petr |
author_facet | Plasil, Martin Mohandesan, Elmira Fitak, Robert R. Musilova, Petra Kubickova, Svatava Burger, Pamela A. Horin, Petr |
author_sort | Plasil, Martin |
collection | PubMed |
description | BACKGROUND: The Major Histocompatibility Complex (MHC) is a genomic region containing genes with crucial roles in immune responses. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. To counteract the high variability of pathogens, the MHC evolved into a region of considerable heterogeneity in its organization, number and extent of polymorphism. Studies of MHCs in different model species contribute to our understanding of mechanisms of immunity, diseases and their evolution. Camels are economically important domestic animals and interesting biomodels. Three species of Old World camels have been recognized: the dromedary (Camelus dromedarius), Bactrian camel (Camelus bactrianus) and the wild camel (Camelus ferus). Despite their importance, little is known about the MHC genomic region, its organization and diversity in camels. The objectives of this study were to identify, map and characterize the MHC region of Old World camelids, with special attention to genetic variation at selected class MHC II loci. RESULTS: Physical mapping located the MHC region to the chromosome 20 in Camelus dromedarius. Cytogenetic and comparative analyses of whole genome sequences showed that the order of the three major sub-regions is “Centromere - Class II – Class III – Class I”. DRA, DRB, DQA and DQB exon 2 sequences encoding the antigen binding site of the corresponding class II antigen presenting molecules showed high degree of sequence similarity and extensive allele sharing across the three species. Unexpectedly low extent of polymorphism with low numbers of alleles and haplotypes was observed in all species, despite different geographic origins of the camels analyzed. The DRA locus was found to be polymorphic, with three alleles shared by all three species. DRA and DQA sequences retrieved from ancient DNA samples of Camelus dromedarius suggested that additional polymorphism might exist. CONCLUSIONS: This study provided evidence that camels possess an MHC comparable to other mammalian species in terms of its genomic localization, organization and sequence similarity. We described ancient variation at the DRA locus, monomorphic in most species. The extent of molecular diversity of MHC class II genes seems to be substantially lower in Old World camels than in other mammalian species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2500-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4774177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47741772016-03-03 The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes Plasil, Martin Mohandesan, Elmira Fitak, Robert R. Musilova, Petra Kubickova, Svatava Burger, Pamela A. Horin, Petr BMC Genomics Research Article BACKGROUND: The Major Histocompatibility Complex (MHC) is a genomic region containing genes with crucial roles in immune responses. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. To counteract the high variability of pathogens, the MHC evolved into a region of considerable heterogeneity in its organization, number and extent of polymorphism. Studies of MHCs in different model species contribute to our understanding of mechanisms of immunity, diseases and their evolution. Camels are economically important domestic animals and interesting biomodels. Three species of Old World camels have been recognized: the dromedary (Camelus dromedarius), Bactrian camel (Camelus bactrianus) and the wild camel (Camelus ferus). Despite their importance, little is known about the MHC genomic region, its organization and diversity in camels. The objectives of this study were to identify, map and characterize the MHC region of Old World camelids, with special attention to genetic variation at selected class MHC II loci. RESULTS: Physical mapping located the MHC region to the chromosome 20 in Camelus dromedarius. Cytogenetic and comparative analyses of whole genome sequences showed that the order of the three major sub-regions is “Centromere - Class II – Class III – Class I”. DRA, DRB, DQA and DQB exon 2 sequences encoding the antigen binding site of the corresponding class II antigen presenting molecules showed high degree of sequence similarity and extensive allele sharing across the three species. Unexpectedly low extent of polymorphism with low numbers of alleles and haplotypes was observed in all species, despite different geographic origins of the camels analyzed. The DRA locus was found to be polymorphic, with three alleles shared by all three species. DRA and DQA sequences retrieved from ancient DNA samples of Camelus dromedarius suggested that additional polymorphism might exist. CONCLUSIONS: This study provided evidence that camels possess an MHC comparable to other mammalian species in terms of its genomic localization, organization and sequence similarity. We described ancient variation at the DRA locus, monomorphic in most species. The extent of molecular diversity of MHC class II genes seems to be substantially lower in Old World camels than in other mammalian species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2500-1) contains supplementary material, which is available to authorized users. BioMed Central 2016-03-01 /pmc/articles/PMC4774177/ /pubmed/26931144 http://dx.doi.org/10.1186/s12864-016-2500-1 Text en © Plasil et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Plasil, Martin Mohandesan, Elmira Fitak, Robert R. Musilova, Petra Kubickova, Svatava Burger, Pamela A. Horin, Petr The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes |
title | The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes |
title_full | The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes |
title_fullStr | The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes |
title_full_unstemmed | The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes |
title_short | The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes |
title_sort | major histocompatibility complex in old world camelids and low polymorphism of its class ii genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774177/ https://www.ncbi.nlm.nih.gov/pubmed/26931144 http://dx.doi.org/10.1186/s12864-016-2500-1 |
work_keys_str_mv | AT plasilmartin themajorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT mohandesanelmira themajorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT fitakrobertr themajorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT musilovapetra themajorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT kubickovasvatava themajorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT burgerpamelaa themajorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT horinpetr themajorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT plasilmartin majorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT mohandesanelmira majorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT fitakrobertr majorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT musilovapetra majorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT kubickovasvatava majorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT burgerpamelaa majorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes AT horinpetr majorhistocompatibilitycomplexinoldworldcamelidsandlowpolymorphismofitsclassiigenes |