Cargando…

Identification of Interactions in the NMD Complex Using Proximity-Dependent Biotinylation (BioID)

Proximity-dependent trans-biotinylation by the Escherichia coli biotin ligase BirA mutant R118G (BirA*) allows stringent streptavidin affinity purification of proximal proteins. This so-called BioID method provides an alternative to the widely used co-immunoprecipitation (co-IP) to identify protein-...

Descripción completa

Detalles Bibliográficos
Autores principales: Schweingruber, Christoph, Soffientini, Paolo, Ruepp, Marc-David, Bachi, Angela, Mühlemann, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774922/
https://www.ncbi.nlm.nih.gov/pubmed/26934103
http://dx.doi.org/10.1371/journal.pone.0150239
Descripción
Sumario:Proximity-dependent trans-biotinylation by the Escherichia coli biotin ligase BirA mutant R118G (BirA*) allows stringent streptavidin affinity purification of proximal proteins. This so-called BioID method provides an alternative to the widely used co-immunoprecipitation (co-IP) to identify protein-protein interactions. Here, we used BioID, on its own and combined with co-IP, to identify proteins involved in nonsense-mediated mRNA decay (NMD), a post-transcriptional mRNA turnover pathway that targets mRNAs that fail to terminate translation properly. In particular, we expressed BirA* fused to the well characterized NMD factors UPF1, UPF2 and SMG5 and detected by liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) the streptavidin-purified biotinylated proteins. While the identified already known interactors confirmed the usefulness of BioID, we also found new potentially important interactors that have escaped previous detection by co-IP, presumably because they associate only weakly and/or very transiently with the NMD machinery. Our results suggest that SMG5 only transiently contacts the UPF1-UPF2-UPF3 complex and that it provides a physical link to the decapping complex. In addition, BioID revealed among others CRKL and EIF4A2 as putative novel transient interactors with NMD factors, but whether or not they have a function in NMD remains to be elucidated.