Cargando…
Improving Protein Expression Prediction Using Extra Features and Ensemble Averaging
The article focus is the improvement of machine learning models capable of predicting protein expression levels based on their codon encoding. Support vector regression (SVR) and partial least squares (PLS) were used to create the models. SVR yields predictions that surpass those of PLS. It is shown...
Autores principales: | Fernandes, Armando, Vinga, Susana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775025/ https://www.ncbi.nlm.nih.gov/pubmed/26934190 http://dx.doi.org/10.1371/journal.pone.0150369 |
Ejemplares similares
-
The Weighted‐Average Lagged Ensemble
por: DelSole, T., et al.
Publicado: (2017) -
Calculating Ensemble Averaged Descriptions of Protein Rigidity without Sampling
por: González, Luis C., et al.
Publicado: (2012) -
Ensemble averaging: What can we learn from skewed feature distributions?
por: Iakovlev, Aleksei U., et al.
Publicado: (2023) -
The aftereffect of the ensemble average of facial expressions on subsequent facial expression recognition
por: Minemoto, Kazusa, et al.
Publicado: (2022) -
Cosmological ensemble and directional averages of observables
por: Bonvin, Camille, et al.
Publicado: (2015)