Cargando…

All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system

Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, X., Li, R., Wu, Haibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776109/
https://www.ncbi.nlm.nih.gov/pubmed/26936334
http://dx.doi.org/10.1038/srep22560
Descripción
Sumario:Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the “dark-state polariton,” three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the “bright polariton,” the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g((3))(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology.