Cargando…

Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application

A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for...

Descripción completa

Detalles Bibliográficos
Autores principales: Morawiec, Seweryn, Holovský, Jakub, Mendes, Manuel J., Müller, Martin, Ganzerová, Kristina, Vetushka, Aliaksei, Ledinský, Martin, Priolo, Francesco, Fejfar, Antonin, Crupi, Isodiana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776151/
https://www.ncbi.nlm.nih.gov/pubmed/26935322
http://dx.doi.org/10.1038/srep22481
_version_ 1782419101749084160
author Morawiec, Seweryn
Holovský, Jakub
Mendes, Manuel J.
Müller, Martin
Ganzerová, Kristina
Vetushka, Aliaksei
Ledinský, Martin
Priolo, Francesco
Fejfar, Antonin
Crupi, Isodiana
author_facet Morawiec, Seweryn
Holovský, Jakub
Mendes, Manuel J.
Müller, Martin
Ganzerová, Kristina
Vetushka, Aliaksei
Ledinský, Martin
Priolo, Francesco
Fejfar, Antonin
Crupi, Isodiana
author_sort Morawiec, Seweryn
collection PubMed
description A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. We demonstrate that with a 0.9 μm thick absorber layer the optical losses related to the plasmonic light trapping in the whole structure are insignificant below 730 nm, above which they increase rapidly with increasing illumination wavelength. An average useful absorption of 43% and an average parasitic absorption of 19% over 400–1100 nm wavelength range is measured for μc-Si:H films deposited on optimized self-assembled Ag nanoparticles coupled with a flat mirror (plasmonic back reflector). For this sample, we demonstrate a significant broadband enhancement of the useful absorption resulting in the achievement of 91% of the maximum theoretical Lambertian limit of absorption.
format Online
Article
Text
id pubmed-4776151
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47761512016-03-09 Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application Morawiec, Seweryn Holovský, Jakub Mendes, Manuel J. Müller, Martin Ganzerová, Kristina Vetushka, Aliaksei Ledinský, Martin Priolo, Francesco Fejfar, Antonin Crupi, Isodiana Sci Rep Article A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. We demonstrate that with a 0.9 μm thick absorber layer the optical losses related to the plasmonic light trapping in the whole structure are insignificant below 730 nm, above which they increase rapidly with increasing illumination wavelength. An average useful absorption of 43% and an average parasitic absorption of 19% over 400–1100 nm wavelength range is measured for μc-Si:H films deposited on optimized self-assembled Ag nanoparticles coupled with a flat mirror (plasmonic back reflector). For this sample, we demonstrate a significant broadband enhancement of the useful absorption resulting in the achievement of 91% of the maximum theoretical Lambertian limit of absorption. Nature Publishing Group 2016-03-03 /pmc/articles/PMC4776151/ /pubmed/26935322 http://dx.doi.org/10.1038/srep22481 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Morawiec, Seweryn
Holovský, Jakub
Mendes, Manuel J.
Müller, Martin
Ganzerová, Kristina
Vetushka, Aliaksei
Ledinský, Martin
Priolo, Francesco
Fejfar, Antonin
Crupi, Isodiana
Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
title Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
title_full Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
title_fullStr Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
title_full_unstemmed Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
title_short Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
title_sort experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776151/
https://www.ncbi.nlm.nih.gov/pubmed/26935322
http://dx.doi.org/10.1038/srep22481
work_keys_str_mv AT morawiecseweryn experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT holovskyjakub experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT mendesmanuelj experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT mullermartin experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT ganzerovakristina experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT vetushkaaliaksei experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT ledinskymartin experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT priolofrancesco experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT fejfarantonin experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication
AT crupiisodiana experimentalquantificationofusefulandparasiticabsorptionoflightinplasmonenhancedthinsiliconfilmsforsolarcellsapplication