Cargando…

Spatial and Temporal Epidemiology of Lumpy Skin Disease in the Middle East, 2012–2015

Lumpy skin disease virus (LSDV) is an infectious disease of cattle that can have severe economic implications. New LSD outbreaks are currently circulating in the Middle East (ME). Since 2012, severe outbreaks were reported in cattle across the region. Characterizing the spatial and temporal dynamics...

Descripción completa

Detalles Bibliográficos
Autores principales: Alkhamis, Mohammad A., VanderWaal, Kimberly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776163/
https://www.ncbi.nlm.nih.gov/pubmed/26973845
http://dx.doi.org/10.3389/fvets.2016.00019
Descripción
Sumario:Lumpy skin disease virus (LSDV) is an infectious disease of cattle that can have severe economic implications. New LSD outbreaks are currently circulating in the Middle East (ME). Since 2012, severe outbreaks were reported in cattle across the region. Characterizing the spatial and temporal dynamics of LSDV in cattle populations is prerequisite for guiding successful surveillance and control efforts at a regional level in the ME. Here, we aim to model the ecological niche of LSDV and identify epidemic progression patterns over the course of the epidemic. We analyzed publically available outbreak data from the ME for the period 2012–2015 using presence-only maximum entropy ecological niche modeling and the time-dependent method for the estimation of the effective reproductive number (R-TD). High-risk areas (probability >0.60) for LSDV identified by ecological niche modeling included parts of many northeastern ME countries, though Israel and Turkey were estimated to be the most suitable locations for occurrence of LSDV outbreaks. The most important environmental predictors that contributed to the ecological niche of LSDV included annual precipitation, land cover, mean diurnal range, type of livestock production system, and global livestock densities. Average monthly effective R-TD was equal to 2.2 (95% CI: 1.2, 3.5), whereas the largest R-TD was estimated in Israel (R-TD = 22.2, 95 CI: 15.2, 31.5) in September 2013, which indicated that the demographic and environmental conditions during this period were suitable to LSDV super-spreading events. The sharp drop of Isreal’s inferred R-TD in the following month reflected the success of their 2013 vaccination campaign in controlling the disease. Our results identified areas in which underreporting of LSDV outbreaks may have occurred. More epidemiological information related to cattle populations are needed to further improve the inferred spatial and temporal characteristics of currently circulating LSDV. However, the methodology presented here may be useful in guiding the design of risk-based surveillance and control programs in the region as well as aid in the formulation of epidemic preparedness plans in neighboring LSDV-free countries.