Cargando…
Maximum-Entropy Inference with a Programmable Annealer
Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the oth...
Autores principales: | Chancellor, Nicholas, Szoke, Szilard, Vinci, Walter, Aeppli, Gabriel, Warburton, Paul A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776239/ https://www.ncbi.nlm.nih.gov/pubmed/26936311 http://dx.doi.org/10.1038/srep22318 |
Ejemplares similares
-
Hearing the Shape of the Ising Model with a Programmable
Superconducting-Flux Annealer
por: Vinci, Walter, et al.
Publicado: (2014) -
Erratum: Hearing the Shape of the Ising Model with a Programmable Superconducting-Flux Annealer
por: Vinci, Walter, et al.
Publicado: (2017) -
Maximum Causal Entropy Specification Inference from Demonstrations
por: Vazquez-Chanlatte, Marcell, et al.
Publicado: (2020) -
Network Inference and Maximum Entropy Estimation on Information Diagrams
por: Martin, Elliot A., et al.
Publicado: (2017) -
An introduction to the maximum entropy approach and its application to inference problems in biology
por: De Martino, Andrea, et al.
Publicado: (2018)