Cargando…
Real-World-Time Simulation of Memory Consolidation in a Large-Scale Cerebellar Model
We report development of a large-scale spiking network model of the cerebellum composed of more than 1 million neurons. The model is implemented on graphics processing units (GPUs), which are dedicated hardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in w...
Autores principales: | Gosui, Masato, Yamazaki, Tadashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776399/ https://www.ncbi.nlm.nih.gov/pubmed/26973472 http://dx.doi.org/10.3389/fnana.2016.00021 |
Ejemplares similares
-
Real-Time Simulation of a Cerebellar Scaffold Model on Graphics Processing Units
por: Kuriyama, Rin, et al.
Publicado: (2021) -
Simulation of a Human-Scale Cerebellar Network Model on the K Computer
por: Yamaura, Hiroshi, et al.
Publicado: (2020) -
Memory Consolidation in the Cerebellar Cortex
por: Kellett, Daniel O., et al.
Publicado: (2010) -
Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method
por: Igarashi, Jun, et al.
Publicado: (2019) -
Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks
por: Casellato, Claudia, et al.
Publicado: (2015)