Cargando…
The mPower study, Parkinson disease mobile data collected using ResearchKit
Current measures of health and disease are often insensitive, episodic, and subjective. Further, these measures generally are not designed to provide meaningful feedback to individuals. The impact of high-resolution activity data collected from mobile phones is only beginning to be explored. Here we...
Autores principales: | Bot, Brian M., Suver, Christine, Neto, Elias Chaibub, Kellen, Michael, Klein, Arno, Bare, Christopher, Doerr, Megan, Pratap, Abhishek, Wilbanks, John, Dorsey, E. Ray, Friend, Stephen H., Trister, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776701/ https://www.ncbi.nlm.nih.gov/pubmed/26938265 http://dx.doi.org/10.1038/sdata.2016.11 |
Ejemplares similares
-
The Mole Mapper Study, mobile phone skin imaging and melanoma risk data collected using ResearchKit
por: Webster, Dan E., et al.
Publicado: (2017) -
The asthma mobile health study, smartphone data collected using ResearchKit
por: Chan, Yu-Feng Yvonne, et al.
Publicado: (2018) -
Formative Evaluation of Participant Experience With Mobile eConsent in the App-Mediated Parkinson mPower Study: A Mixed Methods Study
por: Doerr, Megan, et al.
Publicado: (2017) -
The Healthy Pregnancy Research Program: transforming pregnancy research through a ResearchKit app
por: Radin, Jennifer M., et al.
Publicado: (2018) -
Real-world longitudinal data collected from the SleepHealth mobile app study
por: Deering, Sean, et al.
Publicado: (2020)