Cargando…
miR-100 Inhibits the Growth and Migration of Burn-Denatured Fibroblasts
BACKGROUND: Burn-denatured dermis is able to regain the function and shape of normal dermis; however, the potential mechanisms are still vague. The aim of this study was to investigate roles of miR-100 involved in the growth and migration of burn-denatured fibroblasts. MATERIAL/METHODS: Quantitative...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777239/ https://www.ncbi.nlm.nih.gov/pubmed/26928010 http://dx.doi.org/10.12659/MSM.897443 |
Sumario: | BACKGROUND: Burn-denatured dermis is able to regain the function and shape of normal dermis; however, the potential mechanisms are still vague. The aim of this study was to investigate roles of miR-100 involved in the growth and migration of burn-denatured fibroblasts. MATERIAL/METHODS: Quantitative real-time polymerase chain reaction(qRT-PCR) was used to assess the expression of miR-100. Transient transfection of miR-100 mimics and inhibitor was used to up-regulate or down-regulate the expression of miR-100. Cell proliferation and colony formation assay were used to test the cell growth, and wound healing assay and transwell migration assay were used to evaluate the cell migration. RESULTS: miR-100 expression was notably downregulated in the burn-denatured fibroblasts compared to normal controls. Functionally, transfection of miR-100 inhibitors improved the growth and migration abilities of burn-denatured fibroblasts. In contrast, upregulation of miR-100 inhibits the growth and migration of burn-denatured fibroblasts. CONCLUSIONS: Based on these observations, we concluded that miR-100 can inhibit the growth and migration of burn-denatured fibroblasts. |
---|