Cargando…
Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism
Adenosine is a neuromodulator that regulates neurotransmission in the brain and central nervous system. Recently, spontaneous adenosine release that is cleared in 3–4 sec was discovered in mouse spinal cord slices and anesthetized rat brains. Here, we examined the clearance of spontaneous adenosine...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777247/ https://www.ncbi.nlm.nih.gov/pubmed/27022463 http://dx.doi.org/10.1002/prp2.189 |
_version_ | 1782419268305944576 |
---|---|
author | Nguyen, Michael D. Ross, Ashley E. Ryals, Matthew Lee, Scott T. Venton, B. Jill |
author_facet | Nguyen, Michael D. Ross, Ashley E. Ryals, Matthew Lee, Scott T. Venton, B. Jill |
author_sort | Nguyen, Michael D. |
collection | PubMed |
description | Adenosine is a neuromodulator that regulates neurotransmission in the brain and central nervous system. Recently, spontaneous adenosine release that is cleared in 3–4 sec was discovered in mouse spinal cord slices and anesthetized rat brains. Here, we examined the clearance of spontaneous adenosine in the rat caudate‐putamen and exogenously applied adenosine in caudate brain slices. The V (max) for clearance of exogenously applied adenosine in brain slices was 1.4 ± 0.1 μmol/L/sec. In vivo, the equilibrative nucleoside transport 1 (ENT1) inhibitor, S‐(4‐nitrobenzyl)‐6‐thioinosine (NBTI) (1 mg/kg, i.p.) significantly increased the duration of adenosine, while the ENT1/2 inhibitor, dipyridamole (10 mg/kg, i.p.), did not affect duration. 5‐(3‐Bromophenyl)‐7‐[6‐(4‐morpholinyl)‐3‐pyrido[2,3‐d]byrimidin‐4‐amine dihydrochloride (ABT‐702), an adenosine kinase inhibitor (5 mg/kg, i.p.), increased the duration of spontaneous adenosine release. The adenosine deaminase inhibitor, erythro‐9‐(2‐hydroxy‐3‐nonyl)adenine (EHNA) (10 mg/kg, i.p.), also increased the duration in vivo. Similarly, NBTI (10 μmol/L), ABT‐702 (100 nmol/L), or EHNA (20 μmol/L) also decreased the clearance rate of exogenously applied adenosine in brain slices. The increases in duration for blocking ENT1, adenosine kinase, or adenosine deaminase individually were similar, about 0.4 sec in vivo; thus, the removal of adenosine on a rapid time scale occurs through three mechanisms that have comparable effects. A cocktail of ABT‐702, NBTI, and EHNA significantly increased the duration by 0.7 sec, so the mechanisms are not additive and there may be additional mechanisms clearing adenosine on a rapid time scale. The presence of multiple mechanisms for adenosine clearance on a time scale of seconds demonstrates that adenosine is tightly regulated in the extracellular space. |
format | Online Article Text |
id | pubmed-4777247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-47772472016-03-28 Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism Nguyen, Michael D. Ross, Ashley E. Ryals, Matthew Lee, Scott T. Venton, B. Jill Pharmacol Res Perspect Original Articles Adenosine is a neuromodulator that regulates neurotransmission in the brain and central nervous system. Recently, spontaneous adenosine release that is cleared in 3–4 sec was discovered in mouse spinal cord slices and anesthetized rat brains. Here, we examined the clearance of spontaneous adenosine in the rat caudate‐putamen and exogenously applied adenosine in caudate brain slices. The V (max) for clearance of exogenously applied adenosine in brain slices was 1.4 ± 0.1 μmol/L/sec. In vivo, the equilibrative nucleoside transport 1 (ENT1) inhibitor, S‐(4‐nitrobenzyl)‐6‐thioinosine (NBTI) (1 mg/kg, i.p.) significantly increased the duration of adenosine, while the ENT1/2 inhibitor, dipyridamole (10 mg/kg, i.p.), did not affect duration. 5‐(3‐Bromophenyl)‐7‐[6‐(4‐morpholinyl)‐3‐pyrido[2,3‐d]byrimidin‐4‐amine dihydrochloride (ABT‐702), an adenosine kinase inhibitor (5 mg/kg, i.p.), increased the duration of spontaneous adenosine release. The adenosine deaminase inhibitor, erythro‐9‐(2‐hydroxy‐3‐nonyl)adenine (EHNA) (10 mg/kg, i.p.), also increased the duration in vivo. Similarly, NBTI (10 μmol/L), ABT‐702 (100 nmol/L), or EHNA (20 μmol/L) also decreased the clearance rate of exogenously applied adenosine in brain slices. The increases in duration for blocking ENT1, adenosine kinase, or adenosine deaminase individually were similar, about 0.4 sec in vivo; thus, the removal of adenosine on a rapid time scale occurs through three mechanisms that have comparable effects. A cocktail of ABT‐702, NBTI, and EHNA significantly increased the duration by 0.7 sec, so the mechanisms are not additive and there may be additional mechanisms clearing adenosine on a rapid time scale. The presence of multiple mechanisms for adenosine clearance on a time scale of seconds demonstrates that adenosine is tightly regulated in the extracellular space. John Wiley and Sons Inc. 2015-11-16 /pmc/articles/PMC4777247/ /pubmed/27022463 http://dx.doi.org/10.1002/prp2.189 Text en © 2015 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Nguyen, Michael D. Ross, Ashley E. Ryals, Matthew Lee, Scott T. Venton, B. Jill Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism |
title | Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism |
title_full | Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism |
title_fullStr | Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism |
title_full_unstemmed | Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism |
title_short | Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism |
title_sort | clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777247/ https://www.ncbi.nlm.nih.gov/pubmed/27022463 http://dx.doi.org/10.1002/prp2.189 |
work_keys_str_mv | AT nguyenmichaeld clearanceofrapidadenosinereleaseisregulatedbynucleosidetransportersandmetabolism AT rossashleye clearanceofrapidadenosinereleaseisregulatedbynucleosidetransportersandmetabolism AT ryalsmatthew clearanceofrapidadenosinereleaseisregulatedbynucleosidetransportersandmetabolism AT leescottt clearanceofrapidadenosinereleaseisregulatedbynucleosidetransportersandmetabolism AT ventonbjill clearanceofrapidadenosinereleaseisregulatedbynucleosidetransportersandmetabolism |