Cargando…
Deformability Assessment of Waterborne Protozoa Using a Microfluidic-Enabled Force Microscopy Probe
Many modern filtration technologies are incapable of the complete removal of Cryptosporidium oocysts from drinking-water. Consequently, Cryptosporidium-contaminated drinking-water supplies can severely implicate both water utilities and consumers. Existing methods for the detection of Cryptosporidiu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777494/ https://www.ncbi.nlm.nih.gov/pubmed/26938220 http://dx.doi.org/10.1371/journal.pone.0150438 |
Sumario: | Many modern filtration technologies are incapable of the complete removal of Cryptosporidium oocysts from drinking-water. Consequently, Cryptosporidium-contaminated drinking-water supplies can severely implicate both water utilities and consumers. Existing methods for the detection of Cryptosporidium in drinking-water do not discern between non-pathogenic and pathogenic species, nor between viable and non-viable oocysts. Using FluidFM, a novel force spectroscopy method employing microchannelled cantilevers for single-cell level manipulation, we assessed the size and deformability properties of two species of Cryptosporidium that pose varying levels of risk to human health. A comparison of such characteristics demonstrated the ability of FluidFM to discern between Cryptosporidium muris and Cryptosporidium parvum with 86% efficiency, whilst using a measurement throughput which exceeded 50 discrete oocysts per hour. In addition, we measured the deformability properties for untreated and temperature-inactivated oocysts of the highly infective, human pathogenic C. parvum to assess whether deformability may be a marker of viability. Our results indicate that untreated and temperature-inactivated C. parvum oocysts had overlapping but significantly different deformability distributions. |
---|