Cargando…
Multiple imputation and analysis for high‐dimensional incomplete proteomics data
Multivariable analysis of proteomics data using standard statistical models is hindered by the presence of incomplete data. We faced this issue in a nested case–control study of 135 incident cases of myocardial infarction and 135 pair‐matched controls from the Framingham Heart Study Offspring cohort...
Autores principales: | Yin, Xiaoyan, Levy, Daniel, Willinger, Christine, Adourian, Aram, Larson, Martin G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777663/ https://www.ncbi.nlm.nih.gov/pubmed/26565662 http://dx.doi.org/10.1002/sim.6800 |
Ejemplares similares
-
Multiple imputation for analysis of incomplete data in distributed health data networks
por: Chang, Changgee, et al.
Publicado: (2020) -
Multiple imputation with compatibility for high-dimensional data
por: Zahid, Faisal Maqbool, et al.
Publicado: (2021) -
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
por: Wahl, Simone, et al.
Publicado: (2016) -
Practical considerations for sensitivity analysis after multiple imputation applied to epidemiological studies with incomplete data
por: Héraud-Bousquet, Vanina, et al.
Publicado: (2012)