Cargando…
On Predicting lung cancer subtypes using ‘omic’ data from tumor and tumor-adjacent histologically-normal tissue
BACKGROUND: Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most prevalent histological types among lung cancers. Distinguishing between these subtypes is critically important because they have different implications for prognosis and treatment. Normally, histopathological analyses ar...
Autores principales: | Pineda, Arturo López, Ogoe, Henry Ato, Balasubramanian, Jeya Balaji, Rangel Escareño, Claudia, Visweswaran, Shyam, Herman, James Gordon, Gopalakrishnan, Vanathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778315/ https://www.ncbi.nlm.nih.gov/pubmed/26944944 http://dx.doi.org/10.1186/s12885-016-2223-3 |
Ejemplares similares
-
Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure
por: Lustgarten, Jonathan Lyle, et al.
Publicado: (2017) -
Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data
por: Ogoe, Henry A., et al.
Publicado: (2015) -
Selective Model Averaging with Bayesian Rule Learning for Predictive Biomedicine
por: Balasubramanian, Jeya B., et al.
Publicado: (2014) -
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
por: Balasubramanian, Jeya Balaji, et al.
Publicado: (2018) -
An empirical workflow for genome-wide single nucleotide polymorphism-based predictive modeling
por: Floudas, Charalampos S., et al.
Publicado: (2013)