Cargando…
Maximizing the reliability of non-invasive endocrine sampling in the tiger (Panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites
Evaluation of physiological stress in the tiger (Panthera tigris) using faecal cortisol metabolite (FCM) enzyme immunoassays (EIAs) provides a powerful conservation physiology tool for the species. However, it is important to validate non-invasive endocrine sampling techniques in field conditions to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778480/ https://www.ncbi.nlm.nih.gov/pubmed/27293737 http://dx.doi.org/10.1093/conphys/cov053 |
_version_ | 1782419471877537792 |
---|---|
author | Parnell, Tempe Narayan, Edward J. Nicolson, Vere Martin-Vegue, Patrick Mucci, Al Hero, Jean-Marc |
author_facet | Parnell, Tempe Narayan, Edward J. Nicolson, Vere Martin-Vegue, Patrick Mucci, Al Hero, Jean-Marc |
author_sort | Parnell, Tempe |
collection | PubMed |
description | Evaluation of physiological stress in the tiger (Panthera tigris) using faecal cortisol metabolite (FCM) enzyme immunoassays (EIAs) provides a powerful conservation physiology tool for the species. However, it is important to validate non-invasive endocrine sampling techniques in field conditions to ensure that the method provides a reliable parameter of physiological stress in the species. This is because endocrine measurements are highly species specific and FCM concentrations can be influenced by environmental factors. Here, we studied the impact of the decay rate of FCMs and intra-sample variation of FCMs using a previously validated EIA. To determine the decay rate of FCMs, we measured FCMs in freshly deposited tiger faeces (n = 8 tigers and 48 scats) that were randomly exposed to the natural environment (dry conditions with no rainfall) for up to 192 h. To determine intra-sample variation in FCMs, we used 10 scats from 10 tigers, divided each sample into four sections and each section into four sub-sections and measured FCMs in each section and sub-section. The results of this decay-rate experiment showed that FCMs in tiger faeces began to decay after 48 h exposure to the environmental conditions available. Thus, FCMs within freshly deposited tiger faeces are influenced by available environmental conditions. Changes in weather conditions (e.g. increased rainfall and humidity) could influence the stability of FCMs. The results of the intra-sample variation study showed that inter-variation among scats accounted for 52% of the variations in FCMs, while intra-sample variation between sections (32%) was greater than the sub-sample variation (16%). Intra-sample variation can be reduced by homogenizing the entire lyophilized faecal sample prior to the EIA. In conclusion, careful evaluation of decay rate and complete homogenization of faeces prior to EIA analysis will increase the reliability of FCMs as a non-invasive index of physiological stress in the tiger. |
format | Online Article Text |
id | pubmed-4778480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47784802016-06-10 Maximizing the reliability of non-invasive endocrine sampling in the tiger (Panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites Parnell, Tempe Narayan, Edward J. Nicolson, Vere Martin-Vegue, Patrick Mucci, Al Hero, Jean-Marc Conserv Physiol Research Articles Evaluation of physiological stress in the tiger (Panthera tigris) using faecal cortisol metabolite (FCM) enzyme immunoassays (EIAs) provides a powerful conservation physiology tool for the species. However, it is important to validate non-invasive endocrine sampling techniques in field conditions to ensure that the method provides a reliable parameter of physiological stress in the species. This is because endocrine measurements are highly species specific and FCM concentrations can be influenced by environmental factors. Here, we studied the impact of the decay rate of FCMs and intra-sample variation of FCMs using a previously validated EIA. To determine the decay rate of FCMs, we measured FCMs in freshly deposited tiger faeces (n = 8 tigers and 48 scats) that were randomly exposed to the natural environment (dry conditions with no rainfall) for up to 192 h. To determine intra-sample variation in FCMs, we used 10 scats from 10 tigers, divided each sample into four sections and each section into four sub-sections and measured FCMs in each section and sub-section. The results of this decay-rate experiment showed that FCMs in tiger faeces began to decay after 48 h exposure to the environmental conditions available. Thus, FCMs within freshly deposited tiger faeces are influenced by available environmental conditions. Changes in weather conditions (e.g. increased rainfall and humidity) could influence the stability of FCMs. The results of the intra-sample variation study showed that inter-variation among scats accounted for 52% of the variations in FCMs, while intra-sample variation between sections (32%) was greater than the sub-sample variation (16%). Intra-sample variation can be reduced by homogenizing the entire lyophilized faecal sample prior to the EIA. In conclusion, careful evaluation of decay rate and complete homogenization of faeces prior to EIA analysis will increase the reliability of FCMs as a non-invasive index of physiological stress in the tiger. Oxford University Press 2015-12-07 /pmc/articles/PMC4778480/ /pubmed/27293737 http://dx.doi.org/10.1093/conphys/cov053 Text en © The Author 2015. Published by Oxford University Press and the Society for Experimental Biology. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Research Articles Parnell, Tempe Narayan, Edward J. Nicolson, Vere Martin-Vegue, Patrick Mucci, Al Hero, Jean-Marc Maximizing the reliability of non-invasive endocrine sampling in the tiger (Panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites |
title | Maximizing the reliability of non-invasive endocrine sampling in the tiger (Panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites |
title_full | Maximizing the reliability of non-invasive endocrine sampling in the tiger (Panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites |
title_fullStr | Maximizing the reliability of non-invasive endocrine sampling in the tiger (Panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites |
title_full_unstemmed | Maximizing the reliability of non-invasive endocrine sampling in the tiger (Panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites |
title_short | Maximizing the reliability of non-invasive endocrine sampling in the tiger (Panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites |
title_sort | maximizing the reliability of non-invasive endocrine sampling in the tiger (panthera tigris): environmental decay and intra-sample variation in faecal glucocorticoid metabolites |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778480/ https://www.ncbi.nlm.nih.gov/pubmed/27293737 http://dx.doi.org/10.1093/conphys/cov053 |
work_keys_str_mv | AT parnelltempe maximizingthereliabilityofnoninvasiveendocrinesamplinginthetigerpantheratigrisenvironmentaldecayandintrasamplevariationinfaecalglucocorticoidmetabolites AT narayanedwardj maximizingthereliabilityofnoninvasiveendocrinesamplinginthetigerpantheratigrisenvironmentaldecayandintrasamplevariationinfaecalglucocorticoidmetabolites AT nicolsonvere maximizingthereliabilityofnoninvasiveendocrinesamplinginthetigerpantheratigrisenvironmentaldecayandintrasamplevariationinfaecalglucocorticoidmetabolites AT martinveguepatrick maximizingthereliabilityofnoninvasiveendocrinesamplinginthetigerpantheratigrisenvironmentaldecayandintrasamplevariationinfaecalglucocorticoidmetabolites AT muccial maximizingthereliabilityofnoninvasiveendocrinesamplinginthetigerpantheratigrisenvironmentaldecayandintrasamplevariationinfaecalglucocorticoidmetabolites AT herojeanmarc maximizingthereliabilityofnoninvasiveendocrinesamplinginthetigerpantheratigrisenvironmentaldecayandintrasamplevariationinfaecalglucocorticoidmetabolites |