Cargando…

Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians

The global amphibian biodiversity crisis is driven by disease, habitat destruction and drastically altered ecosystems. It has given rise to an unprecedented need to understand the link between rapidly changing environments, immunocompetence and wildlife health (the nascent field of ecoimmunology). I...

Descripción completa

Detalles Bibliográficos
Autores principales: Clulow, Simon, Harris, Merrilee, Mahony, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778488/
https://www.ncbi.nlm.nih.gov/pubmed/27293727
http://dx.doi.org/10.1093/conphys/cov042
_version_ 1782419473762877440
author Clulow, Simon
Harris, Merrilee
Mahony, Michael J.
author_facet Clulow, Simon
Harris, Merrilee
Mahony, Michael J.
author_sort Clulow, Simon
collection PubMed
description The global amphibian biodiversity crisis is driven by disease, habitat destruction and drastically altered ecosystems. It has given rise to an unprecedented need to understand the link between rapidly changing environments, immunocompetence and wildlife health (the nascent field of ecoimmunology). Increasing our knowledge of the ecoimmunology of amphibians necessitates the development of reliable, field-applicable methods of assessing immunocompetence in non-model species. The phytohaemagglutinin (PHA) inflammation assay uses a lectin to elicit localized inflammation that reflects an organism's capacity to mount an immune response. Although extensively used in birds to assess responses to environmental change, stress and disease, its application in amphibians has been extremely limited. We developed, validated and optimized a practical and effective phytohaemagglutinin inflammation assay in phylogenetically distant amphibians and demonstrated its suitability for use in a wide range of ecoimmunological studies. The protocol was effective for all species tested and worked equally well for both sexes and for adult and sub-adult animals. We determined that using set-force-measuring instruments resulted in a ‘compression effect’ that countered the inflammatory response, reinforcing the need for internal controls. We developed a novel method to determine peak response times more accurately and thereby improve assay sensitivity. Histological validation demonstrated considerable interspecies variation in the robustness of amphibian immune defences. Importantly, we applied the assay to a real-world scenario of varying environmental conditions and proved that the assay effectively detected differences in immune fitness between groups of animals exposed to ecologically meaningful levels of density stress. This provided strong evidence that one cost of metamorphic plasticity responses by tadpoles to increasing density is a reduction in post-metamorphic immune fitness and that metamorphosis does not prevent phenotypic carry-over of larval stress to the adult phenotype. This assay provides an effective tool for understanding the role of global environmental change in the amphibian extinction crisis.
format Online
Article
Text
id pubmed-4778488
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-47784882016-06-10 Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians Clulow, Simon Harris, Merrilee Mahony, Michael J. Conserv Physiol Research Articles The global amphibian biodiversity crisis is driven by disease, habitat destruction and drastically altered ecosystems. It has given rise to an unprecedented need to understand the link between rapidly changing environments, immunocompetence and wildlife health (the nascent field of ecoimmunology). Increasing our knowledge of the ecoimmunology of amphibians necessitates the development of reliable, field-applicable methods of assessing immunocompetence in non-model species. The phytohaemagglutinin (PHA) inflammation assay uses a lectin to elicit localized inflammation that reflects an organism's capacity to mount an immune response. Although extensively used in birds to assess responses to environmental change, stress and disease, its application in amphibians has been extremely limited. We developed, validated and optimized a practical and effective phytohaemagglutinin inflammation assay in phylogenetically distant amphibians and demonstrated its suitability for use in a wide range of ecoimmunological studies. The protocol was effective for all species tested and worked equally well for both sexes and for adult and sub-adult animals. We determined that using set-force-measuring instruments resulted in a ‘compression effect’ that countered the inflammatory response, reinforcing the need for internal controls. We developed a novel method to determine peak response times more accurately and thereby improve assay sensitivity. Histological validation demonstrated considerable interspecies variation in the robustness of amphibian immune defences. Importantly, we applied the assay to a real-world scenario of varying environmental conditions and proved that the assay effectively detected differences in immune fitness between groups of animals exposed to ecologically meaningful levels of density stress. This provided strong evidence that one cost of metamorphic plasticity responses by tadpoles to increasing density is a reduction in post-metamorphic immune fitness and that metamorphosis does not prevent phenotypic carry-over of larval stress to the adult phenotype. This assay provides an effective tool for understanding the role of global environmental change in the amphibian extinction crisis. Oxford University Press 2015-09-12 /pmc/articles/PMC4778488/ /pubmed/27293727 http://dx.doi.org/10.1093/conphys/cov042 Text en © The Author 2015. Published by Oxford University Press and the Society for Experimental Biology. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Research Articles
Clulow, Simon
Harris, Merrilee
Mahony, Michael J.
Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians
title Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians
title_full Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians
title_fullStr Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians
title_full_unstemmed Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians
title_short Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians
title_sort optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778488/
https://www.ncbi.nlm.nih.gov/pubmed/27293727
http://dx.doi.org/10.1093/conphys/cov042
work_keys_str_mv AT clulowsimon optimizationvalidationandefficacyofthephytohaemagglutinininflammationassayforuseinecoimmunologicalstudiesofamphibians
AT harrismerrilee optimizationvalidationandefficacyofthephytohaemagglutinininflammationassayforuseinecoimmunologicalstudiesofamphibians
AT mahonymichaelj optimizationvalidationandefficacyofthephytohaemagglutinininflammationassayforuseinecoimmunologicalstudiesofamphibians