Cargando…

High-quality ChIP-seq analysis of MBD3 in human breast cancer cells

Chromatin accessibility is tightly regulated by multiple factors/mechanisms to establish different cell type-specific gene expression programs from a single genome. Dysregulation of this process can lead to diseases including cancer. The Mi-2/nucleosome remodeling and deacetylase (NuRD) complex is t...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimbo, Takashi, Takaku, Motoki, Wade, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778645/
https://www.ncbi.nlm.nih.gov/pubmed/26981404
http://dx.doi.org/10.1016/j.gdata.2015.12.029
Descripción
Sumario:Chromatin accessibility is tightly regulated by multiple factors/mechanisms to establish different cell type-specific gene expression programs from a single genome. Dysregulation of this process can lead to diseases including cancer. The Mi-2/nucleosome remodeling and deacetylase (NuRD) complex is thought to orchestrate chromatin structure using its intrinsic nucleosome remodeling and histone deacetylase activities. However, the detailed mechanisms by which the NuRD complex regulates chromatin structure in vivo are not yet known. To explore the regulatory mechanisms of the NuRD complex, we mapped genome-wide localization of MBD3, a structural component of NuRD, in a human breast cancer cell line (MDA-MB-231) using a modified ChIP-seq protocol. Our data showed high quality localization information (i.e., high mapping efficiency and low PCR duplication rate) and excellent consistency between biological replicates. The data are deposited in the Gene Expression Omnibus (GSE76116).