Cargando…

Genome-wide RNA-seq and ChIP-seq reveal Linc-YY1 function in regulating YY1/PRC2 activity during skeletal myogenesis

Little is known how lincRNAs are involved in skeletal myogenesis. Here we describe the discovery and functional annotation of Linc-YY1, a novel lincRNA originating from the promoter of the transcription factor (TF) Yin Yang 1 (YY1). Starting from whole transcriptome shotgun sequencing (a.k.a. RNA-se...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Kun, Zhou, Liang, Zhao, Yu, Wang, Huating, Sun, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778671/
https://www.ncbi.nlm.nih.gov/pubmed/26981420
http://dx.doi.org/10.1016/j.gdata.2016.01.022
Descripción
Sumario:Little is known how lincRNAs are involved in skeletal myogenesis. Here we describe the discovery and functional annotation of Linc-YY1, a novel lincRNA originating from the promoter of the transcription factor (TF) Yin Yang 1 (YY1). Starting from whole transcriptome shotgun sequencing (a.k.a. RNA-seq) data from muscle C2C12 cells, a series of bioinformatics analysis was applied towards the identification of hundreds of high-confidence novel lincRNAs. Genome-wide approaches were then employed to demonstrate that Linc-YY1 functions to promote myogenesis through associating with YY1 and regulating YY1/PRC2 transcriptional activity in trans. Here we describe the details of the ChIP-seq, RNA-seq experiments, and data analysis procedures associated with the study published by Zhou and colleagues in the Nature Communications Journal in 2015 Zhou et al. (2015) [1]. The data was deposited on NCBI's Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) with accession number GSE74049.