Cargando…
Annealed Importance Sampling for Neural Mass Models
Neural Mass Models provide a compact description of the dynamical activity of cell populations in neocortical regions. Moreover, models of regional activity can be connected together into networks, and inferences made about the strength of connections, using M/EEG data and Bayesian inference. To dat...
Autores principales: | Penny, Will, Sengupta, Biswa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778905/ https://www.ncbi.nlm.nih.gov/pubmed/26942606 http://dx.doi.org/10.1371/journal.pcbi.1004797 |
Ejemplares similares
-
Gradient-based MCMC samplers for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2016) -
Gradient-free MCMC methods for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2015) -
Quantum deep learning by sampling neural nets with a quantum annealer
por: Higham, Catherine F., et al.
Publicado: (2023) -
Stochastic Gradient Annealed Importance Sampling for Efficient Online Marginal Likelihood Estimation †
por: Cameron, Scott A., et al.
Publicado: (2019) -
Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency
por: Sengupta, Biswa, et al.
Publicado: (2014)