Cargando…

Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads

As breaking news unfolds people increasingly rely on social media to stay abreast of the latest updates. The use of social media in such situations comes with the caveat that new information being released piecemeal may encourage rumours, many of which remain unverified long after their point of rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Zubiaga, Arkaitz, Liakata, Maria, Procter, Rob, Wong Sak Hoi, Geraldine, Tolmie, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778911/
https://www.ncbi.nlm.nih.gov/pubmed/26943909
http://dx.doi.org/10.1371/journal.pone.0150989
_version_ 1782419552207896576
author Zubiaga, Arkaitz
Liakata, Maria
Procter, Rob
Wong Sak Hoi, Geraldine
Tolmie, Peter
author_facet Zubiaga, Arkaitz
Liakata, Maria
Procter, Rob
Wong Sak Hoi, Geraldine
Tolmie, Peter
author_sort Zubiaga, Arkaitz
collection PubMed
description As breaking news unfolds people increasingly rely on social media to stay abreast of the latest updates. The use of social media in such situations comes with the caveat that new information being released piecemeal may encourage rumours, many of which remain unverified long after their point of release. Little is known, however, about the dynamics of the life cycle of a social media rumour. In this paper we present a methodology that has enabled us to collect, identify and annotate a dataset of 330 rumour threads (4,842 tweets) associated with 9 newsworthy events. We analyse this dataset to understand how users spread, support, or deny rumours that are later proven true or false, by distinguishing two levels of status in a rumour life cycle i.e., before and after its veracity status is resolved. The identification of rumours associated with each event, as well as the tweet that resolved each rumour as true or false, was performed by journalist members of the research team who tracked the events in real time. Our study shows that rumours that are ultimately proven true tend to be resolved faster than those that turn out to be false. Whilst one can readily see users denying rumours once they have been debunked, users appear to be less capable of distinguishing true from false rumours when their veracity remains in question. In fact, we show that the prevalent tendency for users is to support every unverified rumour. We also analyse the role of different types of users, finding that highly reputable users such as news organisations endeavour to post well-grounded statements, which appear to be certain and accompanied by evidence. Nevertheless, these often prove to be unverified pieces of information that give rise to false rumours. Our study reinforces the need for developing robust machine learning techniques that can provide assistance in real time for assessing the veracity of rumours. The findings of our study provide useful insights for achieving this aim.
format Online
Article
Text
id pubmed-4778911
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47789112016-03-23 Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads Zubiaga, Arkaitz Liakata, Maria Procter, Rob Wong Sak Hoi, Geraldine Tolmie, Peter PLoS One Research Article As breaking news unfolds people increasingly rely on social media to stay abreast of the latest updates. The use of social media in such situations comes with the caveat that new information being released piecemeal may encourage rumours, many of which remain unverified long after their point of release. Little is known, however, about the dynamics of the life cycle of a social media rumour. In this paper we present a methodology that has enabled us to collect, identify and annotate a dataset of 330 rumour threads (4,842 tweets) associated with 9 newsworthy events. We analyse this dataset to understand how users spread, support, or deny rumours that are later proven true or false, by distinguishing two levels of status in a rumour life cycle i.e., before and after its veracity status is resolved. The identification of rumours associated with each event, as well as the tweet that resolved each rumour as true or false, was performed by journalist members of the research team who tracked the events in real time. Our study shows that rumours that are ultimately proven true tend to be resolved faster than those that turn out to be false. Whilst one can readily see users denying rumours once they have been debunked, users appear to be less capable of distinguishing true from false rumours when their veracity remains in question. In fact, we show that the prevalent tendency for users is to support every unverified rumour. We also analyse the role of different types of users, finding that highly reputable users such as news organisations endeavour to post well-grounded statements, which appear to be certain and accompanied by evidence. Nevertheless, these often prove to be unverified pieces of information that give rise to false rumours. Our study reinforces the need for developing robust machine learning techniques that can provide assistance in real time for assessing the veracity of rumours. The findings of our study provide useful insights for achieving this aim. Public Library of Science 2016-03-04 /pmc/articles/PMC4778911/ /pubmed/26943909 http://dx.doi.org/10.1371/journal.pone.0150989 Text en © 2016 Zubiaga et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Zubiaga, Arkaitz
Liakata, Maria
Procter, Rob
Wong Sak Hoi, Geraldine
Tolmie, Peter
Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads
title Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads
title_full Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads
title_fullStr Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads
title_full_unstemmed Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads
title_short Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads
title_sort analysing how people orient to and spread rumours in social media by looking at conversational threads
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778911/
https://www.ncbi.nlm.nih.gov/pubmed/26943909
http://dx.doi.org/10.1371/journal.pone.0150989
work_keys_str_mv AT zubiagaarkaitz analysinghowpeopleorienttoandspreadrumoursinsocialmediabylookingatconversationalthreads
AT liakatamaria analysinghowpeopleorienttoandspreadrumoursinsocialmediabylookingatconversationalthreads
AT procterrob analysinghowpeopleorienttoandspreadrumoursinsocialmediabylookingatconversationalthreads
AT wongsakhoigeraldine analysinghowpeopleorienttoandspreadrumoursinsocialmediabylookingatconversationalthreads
AT tolmiepeter analysinghowpeopleorienttoandspreadrumoursinsocialmediabylookingatconversationalthreads