Cargando…
Assessment of the effects of phenanthrene and its nitrogen heterocyclic analogues on microbial activity in soil
Microbes are susceptible to contaminant effects, and high concentrations of chemical in soil can impact on microbial growth, density, viability and development. As a result of relative sensitivity of microbes to contaminants, toxicity data are important in determining critical loads or safe levels f...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779084/ https://www.ncbi.nlm.nih.gov/pubmed/27006887 http://dx.doi.org/10.1186/s40064-016-1918-x |
Sumario: | Microbes are susceptible to contaminant effects, and high concentrations of chemical in soil can impact on microbial growth, density, viability and development. As a result of relative sensitivity of microbes to contaminants, toxicity data are important in determining critical loads or safe levels for contaminants in soil. Therefore the aim of this study was to assess the impact of phenanthrene and the 3-ring nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on soil microbial respiration. Soil samples were amended with phenanthrene and its 3-ring nitrogen-containing analogues and respiration rates (using substrate induced respiration), CO(2) production inhibition and/or stress and total culturable microbial numbers were measured over a 90 days soil-contact time. The study showed that inhibition of phenanthrene amended soils occurred in the first 60 days, while the nitrogen-containing analogues impacted on respiration with increased concentration and contact time. Time dependent inhibitions were more than 25 % portraying N-PAHs toxic and inhibitory effects on microbial synthesis of the added carbon substrate. Further, statistical analysis of data revealed statistically significant differences in the respiration rates over time (p < 0.05). This suggests that soil microorganisms may be more sensitive to N-PAHs in soil than the homocyclic PAH analogues. This current study provides baseline toxicity data to the understanding of the environmental impact of N-PAHs, and assists science-based decision makers for improved management of N-PAH contaminated sites. |
---|