Cargando…

Multiplicative noise removal using primal–dual and reweighted alternating minimization

Multiplicative noise removal is an important research topic in image processing field. An algorithm using reweighted alternating minimization to remove this kind of noise is proposed in our preliminary work. While achieving good results, a small parameter is needed to avoid the denominator vanishing...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xudong, Bi, Yingzhou, Feng, Xiangchu, Huo, Leigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779116/
https://www.ncbi.nlm.nih.gov/pubmed/27006885
http://dx.doi.org/10.1186/s40064-016-1807-3
_version_ 1782419581279666176
author Wang, Xudong
Bi, Yingzhou
Feng, Xiangchu
Huo, Leigang
author_facet Wang, Xudong
Bi, Yingzhou
Feng, Xiangchu
Huo, Leigang
author_sort Wang, Xudong
collection PubMed
description Multiplicative noise removal is an important research topic in image processing field. An algorithm using reweighted alternating minimization to remove this kind of noise is proposed in our preliminary work. While achieving good results, a small parameter is needed to avoid the denominator vanishing. We find that the parameter has important influence on numerical results and has to be chosen carefully. In this paper a primal–dual algorithm is designed without the artificial parameter. Numerical experiments show that the new algorithm can get a good visual quality, overcome staircase effects and preserve the edges, while maintaining high signal-to-noise ratio.
format Online
Article
Text
id pubmed-4779116
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-47791162016-03-22 Multiplicative noise removal using primal–dual and reweighted alternating minimization Wang, Xudong Bi, Yingzhou Feng, Xiangchu Huo, Leigang Springerplus Research Multiplicative noise removal is an important research topic in image processing field. An algorithm using reweighted alternating minimization to remove this kind of noise is proposed in our preliminary work. While achieving good results, a small parameter is needed to avoid the denominator vanishing. We find that the parameter has important influence on numerical results and has to be chosen carefully. In this paper a primal–dual algorithm is designed without the artificial parameter. Numerical experiments show that the new algorithm can get a good visual quality, overcome staircase effects and preserve the edges, while maintaining high signal-to-noise ratio. Springer International Publishing 2016-03-05 /pmc/articles/PMC4779116/ /pubmed/27006885 http://dx.doi.org/10.1186/s40064-016-1807-3 Text en © Wang et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Wang, Xudong
Bi, Yingzhou
Feng, Xiangchu
Huo, Leigang
Multiplicative noise removal using primal–dual and reweighted alternating minimization
title Multiplicative noise removal using primal–dual and reweighted alternating minimization
title_full Multiplicative noise removal using primal–dual and reweighted alternating minimization
title_fullStr Multiplicative noise removal using primal–dual and reweighted alternating minimization
title_full_unstemmed Multiplicative noise removal using primal–dual and reweighted alternating minimization
title_short Multiplicative noise removal using primal–dual and reweighted alternating minimization
title_sort multiplicative noise removal using primal–dual and reweighted alternating minimization
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779116/
https://www.ncbi.nlm.nih.gov/pubmed/27006885
http://dx.doi.org/10.1186/s40064-016-1807-3
work_keys_str_mv AT wangxudong multiplicativenoiseremovalusingprimaldualandreweightedalternatingminimization
AT biyingzhou multiplicativenoiseremovalusingprimaldualandreweightedalternatingminimization
AT fengxiangchu multiplicativenoiseremovalusingprimaldualandreweightedalternatingminimization
AT huoleigang multiplicativenoiseremovalusingprimaldualandreweightedalternatingminimization