Cargando…
Multiplicative noise removal using primal–dual and reweighted alternating minimization
Multiplicative noise removal is an important research topic in image processing field. An algorithm using reweighted alternating minimization to remove this kind of noise is proposed in our preliminary work. While achieving good results, a small parameter is needed to avoid the denominator vanishing...
Autores principales: | Wang, Xudong, Bi, Yingzhou, Feng, Xiangchu, Huo, Leigang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779116/ https://www.ncbi.nlm.nih.gov/pubmed/27006885 http://dx.doi.org/10.1186/s40064-016-1807-3 |
Ejemplares similares
-
Anisotropic Diffusion Based Multiplicative Speckle Noise Removal
por: Gao, Mei, et al.
Publicado: (2019) -
A primal-dual splitting algorithm for composite monotone inclusions with minimal lifting
por: Aragón-Artacho, Francisco J., et al.
Publicado: (2022) -
Learned Primal Dual Reconstruction for PET
por: Guazzo, Alessandro, et al.
Publicado: (2021) -
A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints
por: Conn, A R, et al.
Publicado: (1996) -
Factorization and primality testing
por: Bressoud, David M
Publicado: (1989)