Cargando…

Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts

[Image: see text] The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and l...

Descripción completa

Detalles Bibliográficos
Autores principales: Tabb, David L., Wang, Xia, Carr, Steven A., Clauser, Karl R., Mertins, Philipp, Chambers, Matthew C., Holman, Jerry D., Wang, Jing, Zhang, Bing, Zimmerman, Lisa J., Chen, Xian, Gunawardena, Harsha P., Davies, Sherri R., Ellis, Matthew J. C., Li, Shunqiang, Townsend, R. Reid, Boja, Emily S., Ketchum, Karen A., Kinsinger, Christopher R., Mesri, Mehdi, Rodriguez, Henry, Liu, Tao, Kim, Sangtae, McDermott, Jason E., Payne, Samuel H., Petyuk, Vladislav A., Rodland, Karin D., Smith, Richard D., Yang, Feng, Chan, Daniel W., Zhang, Bai, Zhang, Hui, Zhang, Zhen, Zhou, Jian-Ying, Liebler, Daniel C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779376/
https://www.ncbi.nlm.nih.gov/pubmed/26653538
http://dx.doi.org/10.1021/acs.jproteome.5b00859
_version_ 1782419618802958336
author Tabb, David L.
Wang, Xia
Carr, Steven A.
Clauser, Karl R.
Mertins, Philipp
Chambers, Matthew C.
Holman, Jerry D.
Wang, Jing
Zhang, Bing
Zimmerman, Lisa J.
Chen, Xian
Gunawardena, Harsha P.
Davies, Sherri R.
Ellis, Matthew J. C.
Li, Shunqiang
Townsend, R. Reid
Boja, Emily S.
Ketchum, Karen A.
Kinsinger, Christopher R.
Mesri, Mehdi
Rodriguez, Henry
Liu, Tao
Kim, Sangtae
McDermott, Jason E.
Payne, Samuel H.
Petyuk, Vladislav A.
Rodland, Karin D.
Smith, Richard D.
Yang, Feng
Chan, Daniel W.
Zhang, Bai
Zhang, Hui
Zhang, Zhen
Zhou, Jian-Ying
Liebler, Daniel C.
author_facet Tabb, David L.
Wang, Xia
Carr, Steven A.
Clauser, Karl R.
Mertins, Philipp
Chambers, Matthew C.
Holman, Jerry D.
Wang, Jing
Zhang, Bing
Zimmerman, Lisa J.
Chen, Xian
Gunawardena, Harsha P.
Davies, Sherri R.
Ellis, Matthew J. C.
Li, Shunqiang
Townsend, R. Reid
Boja, Emily S.
Ketchum, Karen A.
Kinsinger, Christopher R.
Mesri, Mehdi
Rodriguez, Henry
Liu, Tao
Kim, Sangtae
McDermott, Jason E.
Payne, Samuel H.
Petyuk, Vladislav A.
Rodland, Karin D.
Smith, Richard D.
Yang, Feng
Chan, Daniel W.
Zhang, Bai
Zhang, Hui
Zhang, Zhen
Zhou, Jian-Ying
Liebler, Daniel C.
author_sort Tabb, David L.
collection PubMed
description [Image: see text] The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC–MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilar workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation (source code is available from http://homepages.uc.edu/~wang2x7/Research.htm). From these assessments, we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61 to 93% of the time. When comparing across different instruments and quantitative technologies, using multiple replicates, differential genes were reproduced by other data sets from 67 to 99% of the time. Projecting gene differences to biological pathways and networks increased the degree of similarity. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation.
format Online
Article
Text
id pubmed-4779376
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-47793762016-03-09 Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts Tabb, David L. Wang, Xia Carr, Steven A. Clauser, Karl R. Mertins, Philipp Chambers, Matthew C. Holman, Jerry D. Wang, Jing Zhang, Bing Zimmerman, Lisa J. Chen, Xian Gunawardena, Harsha P. Davies, Sherri R. Ellis, Matthew J. C. Li, Shunqiang Townsend, R. Reid Boja, Emily S. Ketchum, Karen A. Kinsinger, Christopher R. Mesri, Mehdi Rodriguez, Henry Liu, Tao Kim, Sangtae McDermott, Jason E. Payne, Samuel H. Petyuk, Vladislav A. Rodland, Karin D. Smith, Richard D. Yang, Feng Chan, Daniel W. Zhang, Bai Zhang, Hui Zhang, Zhen Zhou, Jian-Ying Liebler, Daniel C. J Proteome Res [Image: see text] The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC–MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilar workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation (source code is available from http://homepages.uc.edu/~wang2x7/Research.htm). From these assessments, we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61 to 93% of the time. When comparing across different instruments and quantitative technologies, using multiple replicates, differential genes were reproduced by other data sets from 67 to 99% of the time. Projecting gene differences to biological pathways and networks increased the degree of similarity. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation. American Chemical Society 2015-12-14 2016-03-04 /pmc/articles/PMC4779376/ /pubmed/26653538 http://dx.doi.org/10.1021/acs.jproteome.5b00859 Text en Copyright © 2015 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Tabb, David L.
Wang, Xia
Carr, Steven A.
Clauser, Karl R.
Mertins, Philipp
Chambers, Matthew C.
Holman, Jerry D.
Wang, Jing
Zhang, Bing
Zimmerman, Lisa J.
Chen, Xian
Gunawardena, Harsha P.
Davies, Sherri R.
Ellis, Matthew J. C.
Li, Shunqiang
Townsend, R. Reid
Boja, Emily S.
Ketchum, Karen A.
Kinsinger, Christopher R.
Mesri, Mehdi
Rodriguez, Henry
Liu, Tao
Kim, Sangtae
McDermott, Jason E.
Payne, Samuel H.
Petyuk, Vladislav A.
Rodland, Karin D.
Smith, Richard D.
Yang, Feng
Chan, Daniel W.
Zhang, Bai
Zhang, Hui
Zhang, Zhen
Zhou, Jian-Ying
Liebler, Daniel C.
Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts
title Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts
title_full Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts
title_fullStr Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts
title_full_unstemmed Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts
title_short Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts
title_sort reproducibility of differential proteomic technologies in cptac fractionated xenografts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779376/
https://www.ncbi.nlm.nih.gov/pubmed/26653538
http://dx.doi.org/10.1021/acs.jproteome.5b00859
work_keys_str_mv AT tabbdavidl reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT wangxia reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT carrstevena reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT clauserkarlr reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT mertinsphilipp reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT chambersmatthewc reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT holmanjerryd reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT wangjing reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT zhangbing reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT zimmermanlisaj reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT chenxian reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT gunawardenaharshap reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT daviessherrir reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT ellismatthewjc reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT lishunqiang reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT townsendrreid reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT bojaemilys reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT ketchumkarena reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT kinsingerchristopherr reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT mesrimehdi reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT rodriguezhenry reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT liutao reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT kimsangtae reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT mcdermottjasone reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT paynesamuelh reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT petyukvladislava reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT rodlandkarind reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT smithrichardd reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT yangfeng reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT chandanielw reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT zhangbai reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT zhanghui reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT zhangzhen reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT zhoujianying reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts
AT lieblerdanielc reproducibilityofdifferentialproteomictechnologiesincptacfractionatedxenografts