Cargando…

Automatic segmentation of myocardium at risk from contrast enhanced SSFP CMR: validation against expert readers and SPECT

BACKGROUND: Efficacy of reperfusion therapy can be assessed as myocardial salvage index (MSI) by determining the size of myocardium at risk (MaR) and myocardial infarction (MI), (MSI = 1-MI/MaR). Cardiovascular magnetic resonance (CMR) can be used to assess MI by late gadolinium enhancement (LGE) an...

Descripción completa

Detalles Bibliográficos
Autores principales: Tufvesson, Jane, Carlsson, Marcus, Aletras, Anthony H., Engblom, Henrik, Deux, Jean-François, Koul, Sasha, Sörensson, Peder, Pernow, John, Atar, Dan, Erlinge, David, Arheden, Håkan, Heiberg, Einar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779553/
https://www.ncbi.nlm.nih.gov/pubmed/26946139
http://dx.doi.org/10.1186/s12880-016-0124-1
Descripción
Sumario:BACKGROUND: Efficacy of reperfusion therapy can be assessed as myocardial salvage index (MSI) by determining the size of myocardium at risk (MaR) and myocardial infarction (MI), (MSI = 1-MI/MaR). Cardiovascular magnetic resonance (CMR) can be used to assess MI by late gadolinium enhancement (LGE) and MaR by either T2-weighted imaging or contrast enhanced SSFP (CE-SSFP). Automatic segmentation algorithms have been developed and validated for MI by LGE as well as for MaR by T2-weighted imaging. There are, however, no algorithms available for CE-SSFP. Therefore, the aim of this study was to develop and validate automatic segmentation of MaR in CE-SSFP. METHODS: The automatic algorithm applies surface coil intensity correction and classifies myocardial intensities by Expectation Maximization to define a MaR region based on a priori regional criteria, and infarct region from LGE. Automatic segmentation was validated against manual delineation by expert readers in 183 patients with reperfused acute MI from two multi-center randomized clinical trials (RCT) (CHILL-MI and MITOCARE) and against myocardial perfusion SPECT in an additional set (n = 16). Endocardial and epicardial borders were manually delineated at end-diastole and end-systole. Manual delineation of MaR was used as reference and inter-observer variability was assessed for both manual delineation and automatic segmentation of MaR in a subset of patients (n = 15). MaR was expressed as percent of left ventricular mass (%LVM) and analyzed by bias (mean ± standard deviation). Regional agreement was analyzed by Dice Similarity Coefficient (DSC) (mean ± standard deviation). RESULTS: MaR assessed by manual and automatic segmentation were 36 ± 10 % and 37 ± 11 %LVM respectively with bias 1 ± 6 %LVM and regional agreement DSC 0.85 ± 0.08 (n = 183). MaR assessed by SPECT and CE-SSFP automatic segmentation were 27 ± 10 %LVM and 29 ± 7 %LVM respectively with bias 2 ± 7 %LVM. Inter-observer variability was 0 ± 3 %LVM for manual delineation and -1 ± 2 %LVM for automatic segmentation. CONCLUSIONS: Automatic segmentation of MaR in CE-SSFP was validated against manual delineation in multi-center, multi-vendor studies with low bias and high regional agreement. Bias and variability was similar to inter-observer variability of manual delineation and inter-observer variability was decreased by automatic segmentation. Thus, the proposed automatic segmentation can be used to reduce subjectivity in quantification of MaR in RCT. CLINICAL TRIAL REGISTRATION: NCT01379261. NCT01374321. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12880-016-0124-1) contains supplementary material, which is available to authorized users.