Cargando…

Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property

A novel class of polymers called “slide-ring” (SR) materials with slideable junctions were used for high damping composites for the first time. The SR acts as the high damping phase dispersed in the natural rubber (NR) matrix, and epoxidized natural rubber (ENR) acts as the compatibilizer. The morph...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wencai, Zhao, Detao, Yang, Jingna, Nishi, Toshio, Ito, Kohzo, Zhao, Xiuying, Zhang, Liqun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780003/
https://www.ncbi.nlm.nih.gov/pubmed/26949077
http://dx.doi.org/10.1038/srep22810
Descripción
Sumario:A novel class of polymers called “slide-ring” (SR) materials with slideable junctions were used for high damping composites for the first time. The SR acts as the high damping phase dispersed in the natural rubber (NR) matrix, and epoxidized natural rubber (ENR) acts as the compatibilizer. The morphological, structural, and mechanical properties of the composites were investigated by atomic force microscope (AFM), transmission electron microscope (TEM), dynamic mechanical thermal analyzer (DMTA), rubber processing analyzer (RPA), and tensile tester. AFM and TEM results showed that the SR phase was uniformly dispersed in the composites, in a small size that is a function of ENR. DMTA and RPA results showed that the damping factor of the composites is much higher than that of NR, especially at room temperatures. Stretch hysteresis was used to study the energy dissipation of the composites at large strains. The results showed that SR and ENR can significantly improve the dissipation efficiency at strains lower than 200% strain. Wide-angle X-ray diffraction was used to study the strain-induced crystallization of the composites. The results indicated that the impact of the SR on the crystallization of NR is mitigated by the insulating effect of ENR.