Cargando…

Recent Advances in Targeting Tumor Energy Metabolism with Tumor Acidosis as a Biomarker of Drug Efficacy

Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This re...

Descripción completa

Detalles Bibliográficos
Autores principales: Akhenblit, Paul J, Pagel, Mark D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780427/
https://www.ncbi.nlm.nih.gov/pubmed/26962408
http://dx.doi.org/10.4172/1948-5956.1000382
Descripción
Sumario:Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This review will cover glucose and fatty acid metabolism, PI3K/AKT/mTOR, HIF-1 and glutamine pathways in tumor energy metabolism, and how they are being exploited for treatments and therapies by promising pre-clinical or clinical drugs being developed or investigated. Additionally, acidification of the tumor extracellular microenvironment is hypothesized to be the result of active tumor metabolism. This implies that tumor extracellular pH (pHe) can be a biomarker for assessing the efficacy of therapies that target tumor metabolism. Several translational molecular imaging methods (PET, MRI) for interrogating tumor acidification and its suppression are discussed as well.