Cargando…
Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity
INTRODUCTION: Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780766/ https://www.ncbi.nlm.nih.gov/pubmed/26950211 http://dx.doi.org/10.1371/journal.pone.0149782 |
_version_ | 1782419803328217088 |
---|---|
author | Verhaag, Esther M. Buist-Homan, Manon Koehorst, Martijn Groen, Albert K. Moshage, Han Faber, Klaas Nico |
author_facet | Verhaag, Esther M. Buist-Homan, Manon Koehorst, Martijn Groen, Albert K. Moshage, Han Faber, Klaas Nico |
author_sort | Verhaag, Esther M. |
collection | PubMed |
description | INTRODUCTION: Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. AIM: To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. METHODS: HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. RESULTS: Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA-preconditioning. CONCLUSIONS: Sub-toxic concentrations of bile acids in the range that occur under normal physiological conditions protect HepG2.rNtcp cells against GCDCA-induced apoptosis, which is independent of FXR-controlled changes in bile acid transport. |
format | Online Article Text |
id | pubmed-4780766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47807662016-03-23 Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity Verhaag, Esther M. Buist-Homan, Manon Koehorst, Martijn Groen, Albert K. Moshage, Han Faber, Klaas Nico PLoS One Research Article INTRODUCTION: Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. AIM: To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. METHODS: HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. RESULTS: Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA-preconditioning. CONCLUSIONS: Sub-toxic concentrations of bile acids in the range that occur under normal physiological conditions protect HepG2.rNtcp cells against GCDCA-induced apoptosis, which is independent of FXR-controlled changes in bile acid transport. Public Library of Science 2016-03-07 /pmc/articles/PMC4780766/ /pubmed/26950211 http://dx.doi.org/10.1371/journal.pone.0149782 Text en © 2016 Verhaag et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Verhaag, Esther M. Buist-Homan, Manon Koehorst, Martijn Groen, Albert K. Moshage, Han Faber, Klaas Nico Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity |
title | Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity |
title_full | Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity |
title_fullStr | Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity |
title_full_unstemmed | Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity |
title_short | Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity |
title_sort | hormesis in cholestatic liver disease; preconditioning with low bile acid concentrations protects against bile acid-induced toxicity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780766/ https://www.ncbi.nlm.nih.gov/pubmed/26950211 http://dx.doi.org/10.1371/journal.pone.0149782 |
work_keys_str_mv | AT verhaagestherm hormesisincholestaticliverdiseasepreconditioningwithlowbileacidconcentrationsprotectsagainstbileacidinducedtoxicity AT buisthomanmanon hormesisincholestaticliverdiseasepreconditioningwithlowbileacidconcentrationsprotectsagainstbileacidinducedtoxicity AT koehorstmartijn hormesisincholestaticliverdiseasepreconditioningwithlowbileacidconcentrationsprotectsagainstbileacidinducedtoxicity AT groenalbertk hormesisincholestaticliverdiseasepreconditioningwithlowbileacidconcentrationsprotectsagainstbileacidinducedtoxicity AT moshagehan hormesisincholestaticliverdiseasepreconditioningwithlowbileacidconcentrationsprotectsagainstbileacidinducedtoxicity AT faberklaasnico hormesisincholestaticliverdiseasepreconditioningwithlowbileacidconcentrationsprotectsagainstbileacidinducedtoxicity |