Cargando…

Deletion of the Toll-Like Receptor 5 Gene Per Se Does Not Determine the Gut Microbiome Profile That Induces Metabolic Syndrome: Environment Trumps Genotype

Over the past decade, emerging evidence has linked alterations in the gut microbial composition to a wide range of diseases including obesity, type 2 diabetes, and cardiovascular disease. Toll-like receptors (TLRs) are the major mediators for the interactions between gut microbiota and host innate i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wei, Hartmann, Riley, Tun, Hein Min, Elson, Charles O., Khafipour, Ehsan, Garvey, W. Timothy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780789/
https://www.ncbi.nlm.nih.gov/pubmed/26950299
http://dx.doi.org/10.1371/journal.pone.0150943
Descripción
Sumario:Over the past decade, emerging evidence has linked alterations in the gut microbial composition to a wide range of diseases including obesity, type 2 diabetes, and cardiovascular disease. Toll-like receptors (TLRs) are the major mediators for the interactions between gut microbiota and host innate immune system, which is involved in the localization and structuring of host gut microbiota. A previous study found that TLR5 deficient mice (TLR5KO1) had altered gut microbial composition which led to the development of metabolic syndrome including hyperlipidemia, hypertension, insulin resistance and increased adiposity. In the current study, a second TLR5-deficient mouse model was studied (TLR5KO2). TLR5 deficient mice did not manifest metabolic abnormalities related to the metabolic syndrome compared with littermate controls maintained on normal chow or after feeding a high fat diet. Analysis of the gut microbial composition of littermate TLR5KO2 and wild type mice revealed no significant difference in the overall microbiota structure between genotypes. However, the TLR5KO2 microbiota was distinctly different from that previously reported for TLR5KO1 mice with metabolic syndrome. We conclude that an altered composition of the microbiota in a given environment can result in metabolic syndrome, but it is not a consequence of TLR5 deficiency per se.