Cargando…
Computational Effective Fault Detection by Means of Signature Functions
The paper presents a computationally effective method for fault detection. A system’s responses are measured under healthy and ill conditions. These signals are used to calculate so-called signature functions that create a signal space. The current system’s response is projected into this space. The...
Autores principales: | Baranski, Przemyslaw, Pietrzak, Piotr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780824/ https://www.ncbi.nlm.nih.gov/pubmed/26949942 http://dx.doi.org/10.1371/journal.pone.0150787 |
Ejemplares similares
-
Detecting industrial motor faults with current signatures
por: Krishnan, Shashikumar, et al.
Publicado: (2021) -
Machine Learning-Based Stator Current Data-Driven PMSM Stator Winding Fault Diagnosis
por: Pietrzak, Przemyslaw, et al.
Publicado: (2022) -
Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms
por: Pietrzak, Przemyslaw, et al.
Publicado: (2023) -
Avionic Air Data Sensors Fault Detection and Isolation by means of Singular Perturbation and Geometric Approach
por: Castaldi, Paolo, et al.
Publicado: (2017) -
Actuator Fault Detection and Fault-Tolerant Control for Hexacopter
por: Nguyen, Ngoc Phi, et al.
Publicado: (2019)