Cargando…
A simple and efficient Agrobacteriumtumefaciens-mediated plant transformation of Brassica rapa ssp. pekinensis
The present study aims to investigate the numerous factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Chinese cabbage (Brassica rapa ssp. pekinensis). Factors affecting transformation efficiency, such as age of explants, Agrobacterium concentration, and effect of acetos...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781812/ https://www.ncbi.nlm.nih.gov/pubmed/28330158 http://dx.doi.org/10.1007/s13205-016-0402-1 |
Sumario: | The present study aims to investigate the numerous factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Chinese cabbage (Brassica rapa ssp. pekinensis). Factors affecting transformation efficiency, such as age of explants, Agrobacterium concentration, and effect of acetosyringone, pre-cultivation, infection and co-cultivation time of Agrobacterium were examined. The pre-cultured hypocotyls from young seedlings prior to exposure to Agrobacterium showed higher shoot regeneration. The plant transformation with the modest A. tumefaciens concentrations (0.8 OD) and the 3 days co-cultivation periods increased transformation efficiency. Plant growth hormones [1-naphthyl acetic acid (NAA) and 6-benzyl amino purine (BAP)] were essential for callus and shoot formation. Root formation was effective in half strength MS medium without supplementation of root-inducing hormones. To maintain selection pressure, plant subculture was carried out every 2 weeks with selective antibiotics. The putative transgenic plants were acclimatized in the greenhouse. Polymerase chain reaction was performed to confirm the integration of T-DNA into the genome of transgenic plants. A transformation efficiency of 15 % was obtained. This protocol allows effective transformation and indirect regeneration of Brassica rapa. |
---|