Cargando…
Studying Sub-Dendrograms of Resting-State Functional Networks with Voxel-Wise Hierarchical Clustering
Hierarchical clustering is a useful data-driven approach to classify complex data and has been used to analyze resting-state functional magnetic resonance imaging (fMRI) data and derive functional networks of the human brain at very large scale, such as the entire visual or sensory-motor cortex. In...
Autores principales: | Wang, Yanlu, Msghina, Mussie, Li, Tie-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781834/ https://www.ncbi.nlm.nih.gov/pubmed/27014015 http://dx.doi.org/10.3389/fnhum.2016.00075 |
Ejemplares similares
-
Analysis of Whole-Brain Resting-State fMRI Data Using Hierarchical Clustering Approach
por: Wang, Yanlu, et al.
Publicado: (2013) -
Similarities and differences in the induction and regulation of the negative emotions fear and disgust: A functional near infrared spectroscopy study
por: Sklivanioti Greenfield, Myrto, et al.
Publicado: (2022) -
Effects of Thresholding on Voxel-Wise Correspondence of Breath-Hold and Resting-State Maps of Cerebrovascular Reactivity
por: Fesharaki, Nooshin J., et al.
Publicado: (2021) -
Intra- and Inter-Scanner Reliability of Voxel-Wise Whole-Brain Analytic Metrics for Resting State fMRI
por: Zhao, Na, et al.
Publicado: (2018) -
Aberrant Volume-Wise and Voxel-Wise Concordance Among Dynamic Intrinsic Brain Activity Indices in Parkinson’s Disease: A Resting-State fMRI Study
por: Tian, Yuan, et al.
Publicado: (2022)