Cargando…

Strain-induced water dissociation on supported ultrathin oxide films

Controlling the dissociation of single water molecule on an insulating surface plays a crucial role in many catalytic reactions. In this work, we have identified the enhanced chemical reactivity of ultrathin MgO(100) films deposited on Mo(100) substrate that causes water dissociation. We reveal that...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Zhenjun, Fan, Jing, Xu, Hu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782169/
https://www.ncbi.nlm.nih.gov/pubmed/26953105
http://dx.doi.org/10.1038/srep22853
Descripción
Sumario:Controlling the dissociation of single water molecule on an insulating surface plays a crucial role in many catalytic reactions. In this work, we have identified the enhanced chemical reactivity of ultrathin MgO(100) films deposited on Mo(100) substrate that causes water dissociation. We reveal that the ability to split water on insulating surface closely depends on the lattice mismatch between ultrathin films and the underlying substrate, and substrate-induced in-plane tensile strain dramatically results in water dissociation on MgO(100). Three dissociative adsorption configurations of water with lower energy are predicted, and the structural transition going from molecular form to dissociative form is almost barrierless. Our results provide an effective avenue to achieve water dissociation at the single-molecule level and shed light on how to tune the chemical reactions of insulating surfaces by choosing the suitable substrates.