Cargando…
Testing for association between RNA-Seq and high-dimensional data
BACKGROUND: Testing for association between RNA-Seq and other genomic data is challenging due to high variability of the former and high dimensionality of the latter. RESULTS: Using the negative binomial distribution and a random-effects model, we develop an omnibus test that overcomes both difficul...
Autores principales: | Rauschenberger, Armin, Jonker, Marianne A., van de Wiel, Mark A., Menezes, Renée X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782413/ https://www.ncbi.nlm.nih.gov/pubmed/26951498 http://dx.doi.org/10.1186/s12859-016-0961-5 |
Ejemplares similares
-
An iteration normalization and test method for differential expression analysis of RNA-seq data
por: Zhou, Yan, et al.
Publicado: (2014) -
Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data
por: Gundogdu, Pelin, et al.
Publicado: (2022) -
Improved high-dimensional prediction with Random Forests by the use of co-data
por: te Beest, Dennis E., et al.
Publicado: (2017) -
A robust nonlinear low-dimensional manifold for single cell RNA-seq data
por: Verma, Archit, et al.
Publicado: (2020) -
On Differential Gene Expression Using RNA-Seq Data
por: Lee, Juhee, et al.
Publicado: (2011)