Cargando…
Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features
A framework for automated detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features is proposed and examined. The various stages involved in the proposed methodology include enhancement of microscopic images, segmentati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782618/ https://www.ncbi.nlm.nih.gov/pubmed/27006938 http://dx.doi.org/10.1155/2015/457906 |
_version_ | 1782419992072945664 |
---|---|
author | Kumar, Rajesh Srivastava, Rajeev Srivastava, Subodh |
author_facet | Kumar, Rajesh Srivastava, Rajeev Srivastava, Subodh |
author_sort | Kumar, Rajesh |
collection | PubMed |
description | A framework for automated detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features is proposed and examined. The various stages involved in the proposed methodology include enhancement of microscopic images, segmentation of background cells, features extraction, and finally the classification. An appropriate and efficient method is employed in each of the design steps of the proposed framework after making a comparative analysis of commonly used method in each category. For highlighting the details of the tissue and structures, the contrast limited adaptive histogram equalization approach is used. For the segmentation of background cells, k-means segmentation algorithm is used because it performs better in comparison to other commonly used segmentation methods. In feature extraction phase, it is proposed to extract various biologically interpretable and clinically significant shapes as well as morphology based features from the segmented images. These include gray level texture features, color based features, color gray level texture features, Law's Texture Energy based features, Tamura's features, and wavelet features. Finally, the K-nearest neighborhood method is used for classification of images into normal and cancerous categories because it is performing better in comparison to other commonly used methods for this application. The performance of the proposed framework is evaluated using well-known parameters for four fundamental tissues (connective, epithelial, muscular, and nervous) of randomly selected 1000 microscopic biopsy images. |
format | Online Article Text |
id | pubmed-4782618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-47826182016-03-22 Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features Kumar, Rajesh Srivastava, Rajeev Srivastava, Subodh J Med Eng Research Article A framework for automated detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features is proposed and examined. The various stages involved in the proposed methodology include enhancement of microscopic images, segmentation of background cells, features extraction, and finally the classification. An appropriate and efficient method is employed in each of the design steps of the proposed framework after making a comparative analysis of commonly used method in each category. For highlighting the details of the tissue and structures, the contrast limited adaptive histogram equalization approach is used. For the segmentation of background cells, k-means segmentation algorithm is used because it performs better in comparison to other commonly used segmentation methods. In feature extraction phase, it is proposed to extract various biologically interpretable and clinically significant shapes as well as morphology based features from the segmented images. These include gray level texture features, color based features, color gray level texture features, Law's Texture Energy based features, Tamura's features, and wavelet features. Finally, the K-nearest neighborhood method is used for classification of images into normal and cancerous categories because it is performing better in comparison to other commonly used methods for this application. The performance of the proposed framework is evaluated using well-known parameters for four fundamental tissues (connective, epithelial, muscular, and nervous) of randomly selected 1000 microscopic biopsy images. Hindawi Publishing Corporation 2015 2015-08-23 /pmc/articles/PMC4782618/ /pubmed/27006938 http://dx.doi.org/10.1155/2015/457906 Text en Copyright © 2015 Rajesh Kumar et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kumar, Rajesh Srivastava, Rajeev Srivastava, Subodh Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features |
title | Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features |
title_full | Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features |
title_fullStr | Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features |
title_full_unstemmed | Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features |
title_short | Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features |
title_sort | detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782618/ https://www.ncbi.nlm.nih.gov/pubmed/27006938 http://dx.doi.org/10.1155/2015/457906 |
work_keys_str_mv | AT kumarrajesh detectionandclassificationofcancerfrommicroscopicbiopsyimagesusingclinicallysignificantandbiologicallyinterpretablefeatures AT srivastavarajeev detectionandclassificationofcancerfrommicroscopicbiopsyimagesusingclinicallysignificantandbiologicallyinterpretablefeatures AT srivastavasubodh detectionandclassificationofcancerfrommicroscopicbiopsyimagesusingclinicallysignificantandbiologicallyinterpretablefeatures |