Cargando…
Electro-Optical Properties of Low-Temperature Growth Indium-tin-oxide Nanowires Using Polystyrene Spheres as Catalyst
Polystyrene sphere was chosen as a catalyst to fabricate indium-tin-oxide (ITO) nanowires (NWs) with a low-temperature (280–300 °C) electron-beam deposition process, bearing high purity. The ITO NWs with diameter of 20–50 nm and length of ~2 um were obtained. X-ray diffraction and high-resolution tr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783322/ https://www.ncbi.nlm.nih.gov/pubmed/26956600 http://dx.doi.org/10.1186/s11671-016-1342-8 |
Sumario: | Polystyrene sphere was chosen as a catalyst to fabricate indium-tin-oxide (ITO) nanowires (NWs) with a low-temperature (280–300 °C) electron-beam deposition process, bearing high purity. The ITO NWs with diameter of 20–50 nm and length of ~2 um were obtained. X-ray diffraction and high-resolution transmission electron microscope show high crystal quality. The transmittance is above 90 % at a wavelength 400 nm or more, superior to the ITO bulk film. Owing to the unique morphology gradient of the ITO NWs, the effective refractive index of ITO NWs film is naturally graded from the bottom to the top. The ITO NWs have been used on LED devices (λ = 450 nm), which improved the light output power by 31 % at the current of 150 mA comparing to the one without NWs and did not deteriorate the electrical properties. Such ITO NWs open opportunity in LED devices to further improve light extraction efficiency. |
---|