Cargando…
CoINcIDE: A framework for discovery of patient subtypes across multiple datasets
Patient disease subtypes have the potential to transform personalized medicine. However, many patient subtypes derived from unsupervised clustering analyses on high-dimensional datasets are not replicable across multiple datasets, limiting their clinical utility. We present CoINcIDE, a novel methodo...
Autores principales: | Planey, Catherine R., Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784276/ https://www.ncbi.nlm.nih.gov/pubmed/26961683 http://dx.doi.org/10.1186/s13073-016-0281-4 |
Ejemplares similares
-
Improved discovery of genetic interactions using CRISPRiSeq across multiple environments
por: Jaffe, Mia, et al.
Publicado: (2019) -
scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets
por: Song, Qianqian, et al.
Publicado: (2021) -
OrthoClust: an orthology-based network framework for clustering data across multiple species
por: Yan, Koon-Kiu, et al.
Publicado: (2014) -
LUMPY: a probabilistic framework for structural variant discovery
por: Layer, Ryan M, et al.
Publicado: (2014) -
PhagePhisher: a pipeline for the discovery of covert viral sequences in complex genomic datasets
por: Hatzopoulos, Thomas, et al.
Publicado: (2016)