Cargando…

Plasmodium falciparum: multifaceted resistance to artemisinins

Plasmodium falciparum resistance to artemisinins, the most potent and fastest acting anti-malarials, threatens malaria elimination strategies. Artemisinin resistance is due to mutation of the PfK13 propeller domain and involves an unconventional mechanism based on a quiescence state leading to paras...

Descripción completa

Detalles Bibliográficos
Autores principales: Paloque, Lucie, Ramadani, Arba P., Mercereau-Puijalon, Odile, Augereau, Jean-Michel, Benoit-Vical, Françoise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784301/
https://www.ncbi.nlm.nih.gov/pubmed/26955948
http://dx.doi.org/10.1186/s12936-016-1206-9
_version_ 1782420239188754432
author Paloque, Lucie
Ramadani, Arba P.
Mercereau-Puijalon, Odile
Augereau, Jean-Michel
Benoit-Vical, Françoise
author_facet Paloque, Lucie
Ramadani, Arba P.
Mercereau-Puijalon, Odile
Augereau, Jean-Michel
Benoit-Vical, Françoise
author_sort Paloque, Lucie
collection PubMed
description Plasmodium falciparum resistance to artemisinins, the most potent and fastest acting anti-malarials, threatens malaria elimination strategies. Artemisinin resistance is due to mutation of the PfK13 propeller domain and involves an unconventional mechanism based on a quiescence state leading to parasite recrudescence as soon as drug pressure is removed. The enhanced P. falciparum quiescence capacity of artemisinin-resistant parasites results from an increased ability to manage oxidative damage and an altered cell cycle gene regulation within a complex network involving the unfolded protein response, the PI3K/PI3P/AKT pathway, the PfPK4/eIF2α cascade and yet unidentified transcription factor(s), with minimal energetic requirements and fatty acid metabolism maintained in the mitochondrion and apicoplast. The detailed study of these mechanisms offers a way forward for identifying future intervention targets to fend off established artemisinin resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-016-1206-9) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4784301
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-47843012016-03-10 Plasmodium falciparum: multifaceted resistance to artemisinins Paloque, Lucie Ramadani, Arba P. Mercereau-Puijalon, Odile Augereau, Jean-Michel Benoit-Vical, Françoise Malar J Review Plasmodium falciparum resistance to artemisinins, the most potent and fastest acting anti-malarials, threatens malaria elimination strategies. Artemisinin resistance is due to mutation of the PfK13 propeller domain and involves an unconventional mechanism based on a quiescence state leading to parasite recrudescence as soon as drug pressure is removed. The enhanced P. falciparum quiescence capacity of artemisinin-resistant parasites results from an increased ability to manage oxidative damage and an altered cell cycle gene regulation within a complex network involving the unfolded protein response, the PI3K/PI3P/AKT pathway, the PfPK4/eIF2α cascade and yet unidentified transcription factor(s), with minimal energetic requirements and fatty acid metabolism maintained in the mitochondrion and apicoplast. The detailed study of these mechanisms offers a way forward for identifying future intervention targets to fend off established artemisinin resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-016-1206-9) contains supplementary material, which is available to authorized users. BioMed Central 2016-03-09 /pmc/articles/PMC4784301/ /pubmed/26955948 http://dx.doi.org/10.1186/s12936-016-1206-9 Text en © Paloque et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Review
Paloque, Lucie
Ramadani, Arba P.
Mercereau-Puijalon, Odile
Augereau, Jean-Michel
Benoit-Vical, Françoise
Plasmodium falciparum: multifaceted resistance to artemisinins
title Plasmodium falciparum: multifaceted resistance to artemisinins
title_full Plasmodium falciparum: multifaceted resistance to artemisinins
title_fullStr Plasmodium falciparum: multifaceted resistance to artemisinins
title_full_unstemmed Plasmodium falciparum: multifaceted resistance to artemisinins
title_short Plasmodium falciparum: multifaceted resistance to artemisinins
title_sort plasmodium falciparum: multifaceted resistance to artemisinins
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784301/
https://www.ncbi.nlm.nih.gov/pubmed/26955948
http://dx.doi.org/10.1186/s12936-016-1206-9
work_keys_str_mv AT paloquelucie plasmodiumfalciparummultifacetedresistancetoartemisinins
AT ramadaniarbap plasmodiumfalciparummultifacetedresistancetoartemisinins
AT mercereaupuijalonodile plasmodiumfalciparummultifacetedresistancetoartemisinins
AT augereaujeanmichel plasmodiumfalciparummultifacetedresistancetoartemisinins
AT benoitvicalfrancoise plasmodiumfalciparummultifacetedresistancetoartemisinins