Cargando…

Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity againstFusarium moniliforme

BACKGROUND: Bacillus subtilis strain PB2-L1 produces the lipopeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular nonribosomal peptide synthetase (NRPS). In the present study, the modules SrfA-A-Leu, SrfA-B-Asp, and SrfA-B-Leu from surfactin NRPS in B. subtilis BP2-L1...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Jian, Gao, Ling, Bie, Xiaomei, Lu, Zhaoxin, Liu, Hongxia, Zhang, Chong, Lu, Fengxia, Zhao, Haizhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784341/
https://www.ncbi.nlm.nih.gov/pubmed/26957318
http://dx.doi.org/10.1186/s12866-016-0645-3
Descripción
Sumario:BACKGROUND: Bacillus subtilis strain PB2-L1 produces the lipopeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular nonribosomal peptide synthetase (NRPS). In the present study, the modules SrfA-A-Leu, SrfA-B-Asp, and SrfA-B-Leu from surfactin NRPS in B. subtilis BP2-L1 were successfully knocked-out using a temperature-sensitive plasmid, pKS2-mediated-based, homologous, recombination method. RESULTS: Three novel surfactin products were produced, individually lacking amino acid Leu-3, Asp-5, or Leu-6. These surfactins were detected, isolated, and characterized by HPLC and LC-FTICR-MS/MS. In comparison with native surfactin, [∆Leu(3)]surfactin and [∆Leu(6)]surfactin showed evidence of reduced toxicity, while [∆Asp(5)]surfactin showed stronger inhibition than native surfactin against B. pumilus and Micrococcus luteus. These results showed that the minimum inhibitory concentration of [∆Leu(6)]surfactin for Fusarium moniliforme was 50 μg/mL, such that [∆Leu(6)]surfactin could lead to mycelium projection, cell damage, and leakage of nucleic acids and protein. These factors all contributed to stimulating apoptosis in F. moniliforme. CONCLUSIONS: The present results revealed that [∆Leu(6)]surfactin showed a significant antifungal activity against F. moniliforme and might successfully be employed to control fungal food contamination and improve food safety.