Cargando…

Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands

BACKGROUND: In the 1970s, Anopheles farauti in the Solomon Island responded to indoor residual spraying with DDT by increasingly feeding more outdoors and earlier in the evening. Although long-lasting insecticidal nets (LLINs) are now the primary malaria vector control intervention in the Solomon Is...

Descripción completa

Detalles Bibliográficos
Autores principales: Russell, Tanya L., Beebe, Nigel W., Bugoro, Hugo, Apairamo, Allan, Collins, Frank H., Cooper, Robert D., Lobo, Neil F., Burkot, Thomas R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784415/
https://www.ncbi.nlm.nih.gov/pubmed/26960327
http://dx.doi.org/10.1186/s12936-016-1194-9
_version_ 1782420265053978624
author Russell, Tanya L.
Beebe, Nigel W.
Bugoro, Hugo
Apairamo, Allan
Collins, Frank H.
Cooper, Robert D.
Lobo, Neil F.
Burkot, Thomas R.
author_facet Russell, Tanya L.
Beebe, Nigel W.
Bugoro, Hugo
Apairamo, Allan
Collins, Frank H.
Cooper, Robert D.
Lobo, Neil F.
Burkot, Thomas R.
author_sort Russell, Tanya L.
collection PubMed
description BACKGROUND: In the 1970s, Anopheles farauti in the Solomon Island responded to indoor residual spraying with DDT by increasingly feeding more outdoors and earlier in the evening. Although long-lasting insecticidal nets (LLINs) are now the primary malaria vector control intervention in the Solomon Islands, only a small proportion of An. farauti still seek blood meals indoors and late at night where they are vulnerable to being killed by contract with the insecticides in LLINs. The effectiveness of LLINs and indoor residual spraying (IRS) in controlling malaria transmission where the vectors are exophagic and early biting will depend on whether the predominant outdoor or early biting phenotypes are associated with a subpopulation of the vectors present. METHODS: Mark-release-recapture experiments were conducted in the Solomon Islands to determine if individual An. farauti repeat the same behaviours over successive feeding cycles. The two behavioural phenotypes examined were those on which the WHO recommended malaria vector control strategies, LLINs and IRS, depend: indoor and late night biting. RESULTS: Evidence was found for An. farauti being a single population regarding time (early evening or late night) and location (indoor or outdoor) of blood feeding. Individual An. farauti did not consistently repeat behavioural phenotypes expressed for blood feeding (e.g., while most mosquitoes that fed early and outdoors, and would repeat those behaviours, some fed late at night or indoors in the next feeding cycle). CONCLUSIONS: The finding that An. farauti is a homogeneous population is significant, because during the multiple feeding cycles required to complete the extrinsic incubation period, many individual female anophelines will enter houses late at night and be exposed to the insecticides used in LLINs or IRS. This explains, in part, the control that LLINs and IRS have exerted against a predominantly outdoor feeding vector, such as An. farauti. These findings may be relevant to many of the outdoor feeding vectors that dominate transmission in much of the malaria endemic world and justifies continued use of LLINs. However, the population-level tendency of mosquitoes to feed outdoors and early in the evening does require complementary interventions to accelerate malaria control towards elimination.
format Online
Article
Text
id pubmed-4784415
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-47844152016-03-10 Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands Russell, Tanya L. Beebe, Nigel W. Bugoro, Hugo Apairamo, Allan Collins, Frank H. Cooper, Robert D. Lobo, Neil F. Burkot, Thomas R. Malar J Research BACKGROUND: In the 1970s, Anopheles farauti in the Solomon Island responded to indoor residual spraying with DDT by increasingly feeding more outdoors and earlier in the evening. Although long-lasting insecticidal nets (LLINs) are now the primary malaria vector control intervention in the Solomon Islands, only a small proportion of An. farauti still seek blood meals indoors and late at night where they are vulnerable to being killed by contract with the insecticides in LLINs. The effectiveness of LLINs and indoor residual spraying (IRS) in controlling malaria transmission where the vectors are exophagic and early biting will depend on whether the predominant outdoor or early biting phenotypes are associated with a subpopulation of the vectors present. METHODS: Mark-release-recapture experiments were conducted in the Solomon Islands to determine if individual An. farauti repeat the same behaviours over successive feeding cycles. The two behavioural phenotypes examined were those on which the WHO recommended malaria vector control strategies, LLINs and IRS, depend: indoor and late night biting. RESULTS: Evidence was found for An. farauti being a single population regarding time (early evening or late night) and location (indoor or outdoor) of blood feeding. Individual An. farauti did not consistently repeat behavioural phenotypes expressed for blood feeding (e.g., while most mosquitoes that fed early and outdoors, and would repeat those behaviours, some fed late at night or indoors in the next feeding cycle). CONCLUSIONS: The finding that An. farauti is a homogeneous population is significant, because during the multiple feeding cycles required to complete the extrinsic incubation period, many individual female anophelines will enter houses late at night and be exposed to the insecticides used in LLINs or IRS. This explains, in part, the control that LLINs and IRS have exerted against a predominantly outdoor feeding vector, such as An. farauti. These findings may be relevant to many of the outdoor feeding vectors that dominate transmission in much of the malaria endemic world and justifies continued use of LLINs. However, the population-level tendency of mosquitoes to feed outdoors and early in the evening does require complementary interventions to accelerate malaria control towards elimination. BioMed Central 2016-03-09 /pmc/articles/PMC4784415/ /pubmed/26960327 http://dx.doi.org/10.1186/s12936-016-1194-9 Text en © Russell et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Russell, Tanya L.
Beebe, Nigel W.
Bugoro, Hugo
Apairamo, Allan
Collins, Frank H.
Cooper, Robert D.
Lobo, Neil F.
Burkot, Thomas R.
Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands
title Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands
title_full Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands
title_fullStr Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands
title_full_unstemmed Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands
title_short Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands
title_sort anopheles farauti is a homogeneous population that blood feeds early and outdoors in the solomon islands
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784415/
https://www.ncbi.nlm.nih.gov/pubmed/26960327
http://dx.doi.org/10.1186/s12936-016-1194-9
work_keys_str_mv AT russelltanyal anophelesfarautiisahomogeneouspopulationthatbloodfeedsearlyandoutdoorsinthesolomonislands
AT beebenigelw anophelesfarautiisahomogeneouspopulationthatbloodfeedsearlyandoutdoorsinthesolomonislands
AT bugorohugo anophelesfarautiisahomogeneouspopulationthatbloodfeedsearlyandoutdoorsinthesolomonislands
AT apairamoallan anophelesfarautiisahomogeneouspopulationthatbloodfeedsearlyandoutdoorsinthesolomonislands
AT collinsfrankh anophelesfarautiisahomogeneouspopulationthatbloodfeedsearlyandoutdoorsinthesolomonislands
AT cooperrobertd anophelesfarautiisahomogeneouspopulationthatbloodfeedsearlyandoutdoorsinthesolomonislands
AT loboneilf anophelesfarautiisahomogeneouspopulationthatbloodfeedsearlyandoutdoorsinthesolomonislands
AT burkotthomasr anophelesfarautiisahomogeneouspopulationthatbloodfeedsearlyandoutdoorsinthesolomonislands