Cargando…
Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells
BACKGROUND: Proteasome inhibitors are attractive cancer therapeutic agents because they can regulate apoptosis-related proteins. Bortezomib also known as Velcade(®), a proteasome inhibitor that has been approved by the food and drug administration for treatment of patients with multiple myeloma, and...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784454/ https://www.ncbi.nlm.nih.gov/pubmed/26956626 http://dx.doi.org/10.1186/s12967-016-0823-y |
_version_ | 1782420269821853696 |
---|---|
author | Iskandarani, Ahmad Bhat, Ajaz A. Siveen, Kodappully S. Prabhu, Kirti S. Kuttikrishnan, Shilpa Khan, Muzammil A. Krishnankutty, Roopesh Kulinski, Michal Nasr, Rihab R. Mohammad, Ramzi M. Uddin, Shahab |
author_facet | Iskandarani, Ahmad Bhat, Ajaz A. Siveen, Kodappully S. Prabhu, Kirti S. Kuttikrishnan, Shilpa Khan, Muzammil A. Krishnankutty, Roopesh Kulinski, Michal Nasr, Rihab R. Mohammad, Ramzi M. Uddin, Shahab |
author_sort | Iskandarani, Ahmad |
collection | PubMed |
description | BACKGROUND: Proteasome inhibitors are attractive cancer therapeutic agents because they can regulate apoptosis-related proteins. Bortezomib also known as Velcade(®), a proteasome inhibitor that has been approved by the food and drug administration for treatment of patients with multiple myeloma, and many clinical trials are ongoing to examine to the efficacy of bortezomib for the treatment of other malignancies. Bortezomib has been shown to induce apoptosis and inhibit cell growth of many cancer cells. In current study, we determine whether bortezomib induces cell death/apoptosis in CML. METHODS: Cell viability was measured using MTT assays. Apoptosis was measured by annexin V/PI dual staining and DNA fragmentation assays. Immunoblotting was performed to examine the expression of proteins. Colony assays were performed using methylcellulose. RESULTS: Treatment of CML cells with bortezomib results in downregulation of S-phase kinase protein 2 (SKP2) and concomitant stabilization of the expression of p27Kip1. Furthermore, knockdown of SKP2 with small interference RNA specific for SKP2 caused accumulation of p27Kip1. CML cells exposed to bortezomib leads to conformational changes in Bax protein, resulting in loss of mitochondrial membrane potential and leakage of cytochrome c to the cytosol. In the cytosol, cytochrome c causes sequential activation of caspase-9, caspase-3, PARP cleavage and apoptosis. Pretreatment of CML cells with a universal inhibitor of caspases, z-VAD-fmk, prevents bortezomib-mediated apoptosis. Our data also demonstrated that bortezomib treatment of CML downregulates the expression of inhibitor of apoptosis proteins. Finally, inhibition of proteasome pathways by bortezomib suppresses colony formation ability of CML cells. CONCLUSIONS: Altogether, these findings suggest that bortezomib suppresses the cell proliferation via induction of apoptosis in CML cells by downregulation of SKP2 with concomitant accumulation of p27Kip1, suggesting that proteasomal pathway may form novel therapeutic targets for better management of CML. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-016-0823-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4784454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47844542016-03-10 Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells Iskandarani, Ahmad Bhat, Ajaz A. Siveen, Kodappully S. Prabhu, Kirti S. Kuttikrishnan, Shilpa Khan, Muzammil A. Krishnankutty, Roopesh Kulinski, Michal Nasr, Rihab R. Mohammad, Ramzi M. Uddin, Shahab J Transl Med Research BACKGROUND: Proteasome inhibitors are attractive cancer therapeutic agents because they can regulate apoptosis-related proteins. Bortezomib also known as Velcade(®), a proteasome inhibitor that has been approved by the food and drug administration for treatment of patients with multiple myeloma, and many clinical trials are ongoing to examine to the efficacy of bortezomib for the treatment of other malignancies. Bortezomib has been shown to induce apoptosis and inhibit cell growth of many cancer cells. In current study, we determine whether bortezomib induces cell death/apoptosis in CML. METHODS: Cell viability was measured using MTT assays. Apoptosis was measured by annexin V/PI dual staining and DNA fragmentation assays. Immunoblotting was performed to examine the expression of proteins. Colony assays were performed using methylcellulose. RESULTS: Treatment of CML cells with bortezomib results in downregulation of S-phase kinase protein 2 (SKP2) and concomitant stabilization of the expression of p27Kip1. Furthermore, knockdown of SKP2 with small interference RNA specific for SKP2 caused accumulation of p27Kip1. CML cells exposed to bortezomib leads to conformational changes in Bax protein, resulting in loss of mitochondrial membrane potential and leakage of cytochrome c to the cytosol. In the cytosol, cytochrome c causes sequential activation of caspase-9, caspase-3, PARP cleavage and apoptosis. Pretreatment of CML cells with a universal inhibitor of caspases, z-VAD-fmk, prevents bortezomib-mediated apoptosis. Our data also demonstrated that bortezomib treatment of CML downregulates the expression of inhibitor of apoptosis proteins. Finally, inhibition of proteasome pathways by bortezomib suppresses colony formation ability of CML cells. CONCLUSIONS: Altogether, these findings suggest that bortezomib suppresses the cell proliferation via induction of apoptosis in CML cells by downregulation of SKP2 with concomitant accumulation of p27Kip1, suggesting that proteasomal pathway may form novel therapeutic targets for better management of CML. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-016-0823-y) contains supplementary material, which is available to authorized users. BioMed Central 2016-03-09 /pmc/articles/PMC4784454/ /pubmed/26956626 http://dx.doi.org/10.1186/s12967-016-0823-y Text en © Iskandarani et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Iskandarani, Ahmad Bhat, Ajaz A. Siveen, Kodappully S. Prabhu, Kirti S. Kuttikrishnan, Shilpa Khan, Muzammil A. Krishnankutty, Roopesh Kulinski, Michal Nasr, Rihab R. Mohammad, Ramzi M. Uddin, Shahab Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells |
title | Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells |
title_full | Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells |
title_fullStr | Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells |
title_full_unstemmed | Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells |
title_short | Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells |
title_sort | bortezomib-mediated downregulation of s-phase kinase protein-2 (skp2) causes apoptotic cell death in chronic myelogenous leukemia cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784454/ https://www.ncbi.nlm.nih.gov/pubmed/26956626 http://dx.doi.org/10.1186/s12967-016-0823-y |
work_keys_str_mv | AT iskandaraniahmad bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT bhatajaza bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT siveenkodappullys bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT prabhukirtis bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT kuttikrishnanshilpa bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT khanmuzammila bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT krishnankuttyroopesh bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT kulinskimichal bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT nasrrihabr bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT mohammadramzim bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells AT uddinshahab bortezomibmediateddownregulationofsphasekinaseprotein2skp2causesapoptoticcelldeathinchronicmyelogenousleukemiacells |