Cargando…

The acute effects of multi-ingredient pre-workout ingestion on strength performance, lower body power, and anaerobic capacity

BACKGROUND: Multi-ingredient pre-workout supplements (MIPS) are popular among resistance trained individuals. Previous research has indicated that acute MIPS ingestion may increase muscular endurance when using a hypertrophy-based protocol but less is known in regard to their effects on strength per...

Descripción completa

Detalles Bibliográficos
Autores principales: Jagim, Andrew R., Jones, Margaret T., Wright, Glenn A., St. Antoine, Carly, Kovacs, Attila, Oliver, Jonathan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784458/
https://www.ncbi.nlm.nih.gov/pubmed/26962303
http://dx.doi.org/10.1186/s12970-016-0122-2
Descripción
Sumario:BACKGROUND: Multi-ingredient pre-workout supplements (MIPS) are popular among resistance trained individuals. Previous research has indicated that acute MIPS ingestion may increase muscular endurance when using a hypertrophy-based protocol but less is known in regard to their effects on strength performance and high intensity running capacity. Therefore, the purpose was to determine if short-term, MIPS ingestion influences strength performance and anaerobic running capacity. METHODS: In a double-blind, randomized, placebo controlled, crossover design; 12 males (19 ± 1 yrs.; 180 ± 12 cm; 89.3 ± 11 kg; 13.6 ± 4.9 %BF) had their body composition assessed followed by 5-repetition maximum (5RM) determination of back squat (BS; 119.3 ± 17.7 kg) and bench press (BP; 92.1 ± 17.8 kg) exercises. On two separate occasions subjects ingested a MIPS or a placebo (P) 30-minutes prior to performing a counter movement vertical jump test, 5 sets of 5 repetitions at 85 % of 5RM of BS and BP, followed by a single set to failure, and an anaerobic capacity sprint test to assess peak and mean power. Subjective markers of energy levels and fatigue were also assessed. Subjects returned one week later for a second testing session using counter treatment. RESULTS: MIPS resulted in a greater number of repetitions performed in the final set to failure in the BP (MIPS, 9.8 ± 1.7 repetitions; P, 9.1 ± 2; p = 0.03, d = 0.38), which led to a greater total volume load (set x repetitions x load) in the MIPS (753 ± 211 kg) compared to P (710 ± 226 kg; p =0.03, d = .20). MIPS ingestion improved subjective markers of fatigue (p = 0.01, d = 3.78) and alertness (p = 0.048, d = 2.72) following a bout of resistance training. An increase in mean power was observed in the MIPS condition (p = 0.03, d = 0.25) during the anaerobic sprint test. CONCLUSION: Results suggest that acute ingestion of a MIPS study may increase upper body muscular endurance. In addition, acute MIPS ingestion improved mean power output during an anaerobic capacity sprint test. However, the practical significance of these performance related outcomes may be minimal due to the small effect sizes observed. MIPS ingestion does appear to positively influence subjective markers of fatigue and alertness during high-intensity exercise.