Cargando…

Collocated comparisons of continuous and filter-based PM(2.5) measurements at Fort McMurray, Alberta, Canada

Collocated comparisons for three PM(2.5) monitors were conducted from June 2011 to May 2013 at an air monitoring station in the residential area of Fort McMurray, Alberta, Canada, a city located in the Athabasca Oil Sands Region. Extremely cold winters (down to approximately −40°C) coupled with low...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsu, Yu-Mei, Wang, Xiaoliang, Chow, Judith C., Watson, John G., Percy, Kevin E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784491/
https://www.ncbi.nlm.nih.gov/pubmed/26727574
http://dx.doi.org/10.1080/10962247.2015.1136362
Descripción
Sumario:Collocated comparisons for three PM(2.5) monitors were conducted from June 2011 to May 2013 at an air monitoring station in the residential area of Fort McMurray, Alberta, Canada, a city located in the Athabasca Oil Sands Region. Extremely cold winters (down to approximately −40°C) coupled with low PM(2.5) concentrations present a challenge for continuous measurements. Both the tapered element oscillating microbalance (TEOM), operated at 40°C (i.e., TEOM(40)), and Synchronized Hybrid Ambient Real-time Particulate (SHARP, a Federal Equivalent Method [FEM]), were compared with a Partisol PM(2.5) U.S. Federal Reference Method (FRM) sampler. While hourly TEOM(40) PM(2.5) were consistently ~20–50% lower than that of SHARP, no statistically significant differences were found between the 24-hr averages for FRM and SHARP. Orthogonal regression (OR) equations derived from FRM and TEOM(40) were used to adjust the TEOM(40) (i.e., TEOM(adj)) and improve its agreement with FRM, particularly for the cold season. The 12-year-long hourly TEOM(adj) measurements from 1999 to 2011 based on the OR equations between SHARP and TEOM(40) were derived from the 2-year (2011–2013) collocated measurements. The trend analysis combining both TEOM(adj) and SHARP measurements showed a statistically significant decrease in PM(2.5) concentrations with a seasonal slope of −0.15 μg m(−3) yr(−1) from 1999 to 2014.Implications: Consistency in PM(2.5) measurements are needed for trend analysis. Collocated comparison among the three PM(2.5) monitors demonstrated the difference between FRM and TEOM, as well as between SHARP and TEOM. The orthogonal regressions equations can be applied to correct historical TEOM data to examine long-term trends within the network.