Cargando…
Strong Chang's Conjecture and the tree property at ω(2)()
We prove that a strong version of Chang's Conjecture together with [Formula: see text] implies there are no [Formula: see text]-Aronszajn trees.
Autores principales: | Torres-Pérez, Víctor, Wu, Liuzhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784726/ https://www.ncbi.nlm.nih.gov/pubmed/26973369 http://dx.doi.org/10.1016/j.topol.2015.05.061 |
Ejemplares similares
-
A Strong Scalar Weak Gravity Conjecture and Some Implications
por: Gonzalo, Eduardo
Publicado: (2019) -
Global Chang’s Conjecture and singular cardinals
por: Eskew, Monroe, et al.
Publicado: (2021) -
The relation between the Baum-Connes conjecture and the trace conjecture
por: Lück, W
Publicado: (2001) -
On Ramseyʼs conjecture()
por: Mitra, Tapan, et al.
Publicado: (2013) -
The Bieberbach conjecture
por: Gong, Sheng
Publicado: (2014)